首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymic alterations in EphA4-deficient mice   总被引:2,自引:0,他引:2  
In the present work, we have demonstrated in vivo an altered maturation of the thymic epithelium that results in defective T cell development which increases with age, in the thymus of Eph A4-deficient mice. The deficient thymi are hypocellular and show decreased proportions of double-positive (CD4+CD8+) cells which reach minimal numbers in 4-wk-old thymi. The EphA4 (-/-) phenotype correlates with an early block of T cell precursor differentiation that results in accumulation of CD44-CD25+ triple-negative cells and, sometimes, of CD44+CD25- triple-negative thymocytes as well as with increased numbers of apoptotic cells and an important reduction in the numbers of cycling thymocytes. Various approaches support a key role of the thymic epithelial cells in the observed phenotype. Thymic cytoarchitecture undergoes profound changes earlier than those found in the thymocyte maturation. Thymic cortex is extremely reduced and consists of densely packed thymic epithelial cells. Presumably the lack of forward Eph A4 signaling in the Eph A4 -/- epithelial cells affects their development and finally results in altered T cell development.  相似文献   

2.
Mouse hepatitis virus A59 (MHV-A59) infection of adult BALB/c mice induced a severe, transient atrophy of the thymus. The effect was maximal at 1 week after infection, and thymuses returned to normal size by 2 weeks after infection. There was no effect of glucocorticoids, since thymus atrophy was also found in adrenalectomized, infected mice. In infected thymus, immature CD4+ CD8+ lymphocytes were selectively depleted, and apoptosis of lymphocytes was increased. The MHV receptor glycoprotein MHVR was detected on thymus epithelial cells but not on T lymphocytes. In a small number of stromal epithelial cells, but in very few lymphocytes, the viral genome was detectable by in situ hybridization. These observations suggested that MHV-A59-induced thymic atrophy results not from a generalized lytic infection of T lymphocytes but rather from apoptosis of immature double-positive T cells that might be caused by infection of a small proportion of thymus epithelial cells or from inappropriate secretion of some factor, such as a cytokine.  相似文献   

3.
Immune proteasomes in thymus are involved in processing of self-antigens, which are presented by MHC class I molecules for rejection of autoreactive thymocytes in adults and probably in perinatal rats. The distribution of immune proteasome subunits LMP7 and LMP2 in thymic cells have been investigated during rat perinatal ontogenesis. Double immunofluorescent labeling revealed LMP7 and LMP2 in thymic epithelial and dendritic cells, as well as in CD68 positive cells - macrophages, monocytes - at all developmental stages. LMP2 and LMP7 were also detected by flow cytometry in almost all thymic CD90 lymphocytes through pre- and postnatal ontogenesis. Our results demonstrate that the immune proteasomes are expressed in all types of thymic antigen presenting cells during perinatal ontogenesis, suggesting the establishment of the negative selection in the thymus at the end of fetal life. The observation of the immune proteasome expression in T lymphocytes suggests their role in thymocyte differentiation besides antigen processing in thymus.  相似文献   

4.
In pre-Talpha (pTalpha) gene-deleted mice, the positively selectable CD4+ CD8+ double-positive thymocyte pool is only 1% that in wild-type mice. Consequently, their peripheral T cell compartment is severely lymphopenic with a concomitant increase in proportion of CD25+ FoxP3+ regulatory T cells. Using mixed bone marrow chimeras, where thymic output was 1% normal, the pTalpha(-/-) peripheral T cell phenotype could be reproduced with normal cells. In the pTalpha(-/-) thymus and peripheral lymphoid organs, FoxP3+ CD4+ cells were enriched. Parabiosis experiments showed that many pTalpha(-/-) CD4+ single-positive thymocytes represented recirculating peripheral T cells. Therefore, the enrichment of FoxP3+ CD4+ single-positive thymocytes was not solely due to increased thymic production. Thus, the pTalpha(-/-) mouse serves as a model system with which to study the consequences of chronic decreased thymic T cell production on the physiology of the peripheral T cell compartment.  相似文献   

5.
Stem cell Ag 1 and 2 (Sca-1 and Sca-2), so named due to their expression by mouse bone marrow stem cells, were evaluated for expression by populations of cells within the thymus. Immunohistochemical analysis demonstrated that Sca-1 was expressed by cells in the thymic medulla and by some subcapsular blast cells, as well as by the thymic blood vessels and capsule. Sca-2 expression, which was limited to the thymic cortex, could be associated with large cycling thymic blast cells. Both Sca-1 and Sca-2 were expressed on a sub-population of CD4-CD8- thymocytes, and this subpopulation was entirely contained within the Ly-1lo progenitor fraction of cells. Sca-1 expression by a phenotypically mature subset of CD4+CD8- thymocytes was also noted. Conversely, Sca-2 expression was observed on a phenotypically immature or nonmature subpopulation of CD4-CD8- thymocytes. MEL-14, an antibody that defines functional expression of a lymphocyte homing molecule, identified a small population of thymocytes that contained all four major thymic subsets. Sca-2 split the MEL-14hi thymocyte subset into two Sca-2+ non-mature/immature phenotype fractions and two Sca-2- mature phenotype fractions. In peripheral lymphoid organs, Sca-1 identified a sub-population of mature T lymphocytes that is predominantly CD4+CD8-, in agreement with the thymic distribution of Sca-1. Peripheral T cells of the CD4-CD8+ phenotype were predominantly Sca-1-. In contrast, Sca-2 did not appear to stain peripheral T lymphocytes, but recognized only a subset of B lymphocytes which could be localized by immunohistochemistry to germinal centers. Thus, expression of Sca-1 is observed throughout T cell ontogeny, whereas Sca-2 is expressed by some subsets of thymocytes, including at least one half of thymic blasts, but not by mature peripheral T lymphocytes.  相似文献   

6.
Development of T lymphocytes at extrathymic sites.   总被引:4,自引:0,他引:4  
T lymphocytes expressing both CD4 and CD8 are the predominant cell type in the thymic cortex but are extremely rare outside the thymus of normal mice. In this article, we show that if precursor thymocytes (CD4-CD8-) from fetal or adult donors are injected i.v. into irradiated recipients, some of these cells will lodge in lymph nodes and develop into both CD4+CD8+ (double-positive) and CD4+ or CD8+ (single-positive) cells. This phenomenon also occurred in thymectomized recipients, strongly suggesting it is genuine extrathymic development. Prethymic precursors (e.g., fetal liver), were unable to use the lymph node for T cell development, without thymic processing. The data suggest that given unusual circumstances (irradiation or thymectomy and availability of appropriate precursors), the lymph nodes can support T cell development.  相似文献   

7.
Three in vivo adult mouse models were established to study which signals are required to restore the postnatal thymus. Single administration of dexamethasone, estradiol, or exposure to sublethal dose of gamma irradiation served as prototype thymus-ablating therapies. In all models, transient thymic atrophy was manifested due to the loss of the predominant portion of CD4- CD8- double negative and CD4+ CD8+ double positive thymocytes and was followed by a complete regeneration of the thymuses. Acute atrophy/regeneration was observed in the dexamethasone and irradiation models; in the estradiol-treated animals, slow kinetics of atrophy and regeneration was observed. Importantly, in both acute and chronic models, high levels of IL-7 mRNA were detected in the thymuses isolated from mice during maximum atrophy. In addition, chemokine gene array analysis of involuted thymuses revealed high levels of mRNA expression of stromal-derived factor-1alpha (SDF-1alpha), thymus-expressed chemokine (TECK), and secondary lymphoid tissue chemokine (SLC) but not of other chemokines. The levels of IL-7, SDF-1alpha, TECK, and SLC mRNA inversely correlated with the kinetics of regeneration. RT-PCR analysis of stromal cells purified from involuted thymuses confirmed increased IL-7, SDF-1alpha, and SLC gene expression in MHC class II+ CD45- epithelial cells and increased IL-7 and TECK gene expression in class II+ CD45+ CD11c+ dendritic cells. Thus, our data showed for the first time that expression of IL-7, SDF-1alpha, TECK, and SLC mRNA is induced in the thymic stroma during T cell depletion and may play an important role in the reconstitution of the adult thymus.  相似文献   

8.
We have identified a dominant fetal thymocyte population at day 14.5 of gestation in the mouse that lacks CD4 and CD8 but expresses Fc gamma RII/III several days prior to acquisition of the T cell receptor (TCR) in vivo. If maintained in a thymic microenvironment, this population of CD4-CD8-TCR-Fc gamma RII/III+ thymocytes differentiates first into CD4+CD8+TCRlowFc gamma RII/III- thymocytes and subsequently CD4+CD8-TCRhighFc gamma RII/III- and CD4-CD8+TCRhighFc gamma RII/III- mature Ti alpha-beta lineage T cells. However, if removed from the thymus, the CD4-CD8-TCR-Fc gamma RII/III+ thymocyte population selectively generates functional natural killer (NK) cells in vivo as well as in vitro. These findings show that a cellular pool of Fc gamma RII/III+ precursors gives rise to T and NK lineages in a microenvironment-dependent manner. Moreover, they suggest a hitherto unrecognized role for Fc receptors on primitive T cells.  相似文献   

9.
CD83 expression influences CD4+ T cell development in the thymus   总被引:10,自引:0,他引:10  
Fujimoto Y  Tu L  Miller AS  Bock C  Fujimoto M  Doyle C  Steeber DA  Tedder TF 《Cell》2002,108(6):755-767
T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.  相似文献   

10.
Foxn1Delta/Delta mutants have a block in thymic epithelial cell differentiation at an intermediate progenitor stage, resulting in reduced thymocyte cellularity and blocks at the double-negative and double-positive stages. Whereas naive single-positive thymocytes were reduced >500-fold in the adult Foxn1Delta/Delta thymus, peripheral T cell numbers were reduced only 10-fold. The current data shows that Foxn1Delta/Delta peripheral T cells had increased expression of activation markers and the ability to produce IL-2 and IFN-gamma. These cells acquired this profile immediately after leaving the thymus as early as the newborn stage and maintained high steady-state proliferation in vivo but decreased proliferation in response to TCR stimulation in vitro. Single-positive thymocytes and naive T cells also had constitutively low alphabetaTCR and IL7R expression. These cells also displayed reduced ability to undergo homeostatic proliferation and increased rates of apoptosis. Although the frequency of Foxp3+CD4+CD25+ T cells was normal in Foxn1Delta/Delta mutant mice, these cells failed to have suppressor function, resulting in reduced regulatory T cell activity. Recent data from our laboratory suggest that T cells in the Foxn1Delta/Delta thymus develop from atypical progenitor cells via a noncanonical pathway. Our results suggest that the phenotype of peripheral T cells in Foxn1Delta/Delta mutant mice is the result of atypical progenitor cells developing in an abnormal thymic microenvironment with a deficient TCR and IL7 signaling system.  相似文献   

11.
12.
Invariant NKT (iNKT) cells are a population of TCRalphabeta-expressing cells that are unique in several respects. In contrast to conventional T cells, iNKT cells are selected in the thymus for recognition of CD1, rather than conventional MHC class I or II, and are selected by CD1-expressing double-positive thymocytes, rather than by the thymic stromal cells responsible for positive selection of conventional T cells. We have probed further the requirements for thymic iNKT cell development and find that these cells are highly sensitive to B7-CD28 costimulatory interactions, as evidenced by the substantially decreased numbers of thymic iNKT cells in CD28 and in B7 knockout mice. In contrast to the requirement for CD1, B7-CD28 signaling does not affect early iNKT cell lineage commitment, but exerts its influence on the subsequent intrathymic expansion and differentiation of iNKT cells. CD28 wild-type/CD28-deficient mixed bone marrow chimeras provided evidence of both cell-autonomous and non-cell-autonomous roles for CD28 during iNKT cell development. Paradoxically, transgenic mice in which thymic expression of B7 is elevated have essentially no measurable thymic iNKT cells. Taken together, these results demonstrate that the unique pathway involved in iNKT cell development is marked by a critical role of B7-CD28 interactions and that disruption or augmentation of this costimulatory interaction has substantial effects on iNKT cell development in the thymus.  相似文献   

13.
During thymocyte development, CCR9 is expressed on late CD4-CD8- (double-negative (DN)) and CD4+CD8+ (double-positive) cells, but is subsequently down-regulated as cells transition to the mature CD4+ or CD8+ (single-positive (SP)) stage. This pattern of expression has led to speculation that CCR9 may regulate thymocyte trafficking and/or export. In this study, we generated transgenic mice in which CCR9 surface expression was maintained throughout T cell development. Significantly, forced expression of CCR9 on mature SP thymocytes did not inhibit their export from the thymus, indicating that CCR9 down-regulation is not essential for thymocyte emigration. CCR9 was also expressed prematurely on immature DN thymocytes in CCR9 transgenic mice. Early expression of CCR9 resulted in a partial block of development at the DN stage and a marked reduction in the numbers of double-positive and SP thymocytes. Moreover, in CCR9-transgenic mice, CD25high DN cells were scattered throughout the cortex rather than confined to the subcapsular region of the thymus. Together, these results suggest that regulated expression of CCR9 is critical for normal development of immature thymocytes, but that down-regulation of CCR9 is not a prerequisite for thymocyte emigration.  相似文献   

14.
Although much effort has been directed at dissecting the mechanisms of central tolerance, the role of thymic stromal cells remains elusive. In order to further characterize this event, we developed a mouse model restricting LacZ to thymic stromal cotransporter (TSCOT)-expressing thymic stromal cells (TDLacZ). The thymus of this mouse contains approximately 4,300 TSCOT+ cells, each expressing several thousand molecules of the LacZ antigen. TSCOT+ cells express the cortical marker CDR1, CD40, CD80, CD54, and major histocompatibility complex class II (MHCII). When examining endogenous responses directed against LacZ, we observed significant tolerance. This was evidenced in a diverse T cell repertoire as measured by both a CD4 T cell proliferation assay and an antigen-specific antibody isotype analysis. This tolerance process was at least partially independent of Autoimmune Regulatory Element gene expression. When TDLacZ mice were crossed to a novel CD4 T cell receptor (TCR) transgenic reactive against LacZ (BgII), there was a complete deletion of double-positive thymocytes. Fetal thymic reaggregate culture of CD45- and UEA-depleted thymic stromal cells from TDLacZ and sorted TCR-bearing thymocytes excluded the possibility of cross presentation by thymic dendritic cells and medullary epithelial cells for the deletion. Overall, these results demonstrate that the introduction of a neoantigen into TSCOT-expressing cells can efficiently establish complete tolerance and suggest a possible application for the deletion of antigen-specific T cells by antigen introduction into TSCOT+ cells.  相似文献   

15.
16.
Thymic nurse cells (TNC) contain 20-200 thymocytes within specialized vacuoles in their cytoplasm. The purpose of the uptake of thymocytes by TNCs is unknown. TNCs also have the capacity to present self-antigens, which implies that they may serve a function in the process of thymic education. We have recently reported the development of thymic nurse cell lines that have the ability to bind and internalize T cells. Here, we use one of these TNC lines to identify the thymocyte subpopulation(s) involved in this internalization process. TNCs exposed to freshly isolated thymocytes bind and internalize CD4 and CD8 expressing thymocytes (CD4+CD8+ or double positives) exclusively. More specifically, a subset of the double-positive thymocyte population displayed binding capacity. These double-positive cells express cell surface alpha beta type T cell antigen receptor (TCR), as well as CD3 epsilon. Binding was not inhibited in the presence of antibodies against CD3, CD4, CD8, Class I antigens, or Class II antigens. These results describe two significant events in T cell development. First, TNCs exclusively bind and internalize a subset of alpha beta TCR expressing double-positive T cells. Also, binding is facilitated through a mechanism other than TCR recognition of major histocompatibility complex antigens. This suggests that thymocyte internalization may be independent of the process used by TNCs to present self-antigen.  相似文献   

17.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

18.
Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells.  相似文献   

19.
A fibroblastoid cell line TSt-4 was established from fetal thymus tissue of C57BL/6 mice. When fetal thymus (FT) cells or CD4-8- (DN) cells of adult thymuses were cultured on the monolayer of TSt-4, a considerable proportion of lymphocytes expressed CD4 or both CD4 and CD8 within 1 day, and the CD4+CD8- cells were maintained further while the CD4+8+ cells disappeared by Day 5. A large proportion of cells generated from DN cells but not FT cells was shown to express CD3 and T cell receptor alpha beta. Addition of recombinant interleukin (IL)-7 into the cultures resulted in a marked increase of cell recovery without virtual change in differentiation process of alpha beta lineage. The present work strongly suggests that thymic fibroblasts play an important role in T cell differentiation and IL-7 contributes to supporting proliferation of differentiated cells.  相似文献   

20.
Although it has been established that high levels of estrogen can induce thymic involution, the mechanism by which this happens is not known. We have found that daily i.p. injections of the synthetic estrogen 17-beta-estradiol reduce thymus cellularity by 80% over a period of 4-6 days. Although the atrophy is most strikingly observed in the CD4/CD8 double-positive (DP) thymic subset, the loss of thymocytes is not accompanied by a significant increase in thymocyte apoptosis, suggesting that direct killing of cells may not be the dominant means by which estrogens induce thymic atrophy. Instead, we find that estradiol drastically reduces the lineage-negative, Flt3(+)Sca-1(+)c-Kit(+) population in the bone marrow, a population that contains thymic homing progenitors. Within the thymus, we observe that estradiol treatment results in a preferential depletion of early thymic progenitors. In addition, we find that estradiol leads to a significant reduction in the proliferation of thymocytes responding to pre-TCR signals. Reduced proliferation of DN3 and DN4 cell subsets is likely the major contributor to the reduction in DP thymocytes that is observed. The reduction in early thymic progenitors is also likely to contribute to thymic atrophy, as we show that estradiol treatment can reduce the size of Rag1-deficient thymuses, which lack pre-TCR signals and DP thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号