首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Abstract: Primary cultures of chromaffin cells from bovine adrenal medulla were used to evaluate the ability of several opiates to reduce the release of catecholamines induced by stimulation of nicotinic receptors. Etorphine, β-endorphin, Met-enkephalin[Arg6,Phe7], and the synthetic peptide [d -Ala2,Me-Phe4,Met(O)s-ol]enkephalin inhibited the acetylcholine-induced release of catecholamines with an IC30 varying from 10?7 to 1 × 10?6M. The effect was stereospecific because levorphanol (IC30= 7.5 × 10?7M) was approximately two orders of magnitude more potent than dextrorphan. Morphine (μ-receptor agonist), [d -Ala2, d -Leu5]enkephalin (δ-receptor agonist), ethylketazocine (k -receptor agonist), and N-allylnormetazocine (σ-receptor agonist) were at least 100–1000 times less potent than etorphine. Diprenorphine (IC50= 5 × 10?7M) and naloxone (IC50= 10?6M) antagonized the effect of etorphine. High-affinity, saturable, and stereospecific binding sites for [3H]etorphine, [3H]dihydromorphine, [3H-d -Ala2,d -Leu5]enkephalin, [3H]ethylketazocine, and for [3H]N-allylnormetazocine, [3H]diprenorphine, and [3H]naloxone were detected in chromaffin cell membranes and in membranes obtained from adrenal medulla homogenates. However, the number of binding sites for [3H]etorphine and [3H]diprenorphine was 10–70 times higher than the number of sites measured with the other 3H ligands. The rank order of potency of these compounds for the displacement of [3H]etorphine binding correlates (r = 0.90) with the rank order of potency of the same compounds for the inhibition of acetylcholine-induced catecholamine release. These data suggest that a stereoselective opiate receptor (different from the classic μ-, δ-, k -, or σ-receptor) with high affinity for etorphine, diprenorphine, β-endorphin, and Met-enkephalin[Arg6,Phe7] modulates the function of the nicotinic receptor in adrenal chromaffin cells.  相似文献   

2.
Abstract: Previous studies have suggested that activation of D2-like dopamine receptors inhibits catecholamine secretion from adrenal chromaffin cells. The purpose of this study was to determine whether the activation of D1-like receptors on chromaffin cells affects either catecholamine release from the cells or the inhibition of secretion by D2-like dopamine receptors. Both D1- and D2-selective agonists inhibited secretion elicited by dimethylphenylpiperazinium (DMPP), veratridine, and high K+ levels. The D1-selective agonists 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (Cl-APB) and SKF-38393 inhibited DMPP-stimulated catecholamine secretion in a concentration-dependent manner; 50% inhibition was obtained with ~10 µM Cl-APB and ~100 µM SKF-38393. Of the D2-selective agonists, bromocriptine was a more potent inhibitor of DMPP-stimulated catecholamine release than was quinpirole. The inhibition of secretion caused by Cl-APB or SKF-38393 was additive with the inhibition caused by bromocriptine. Pertussis toxin treatment (50 ng/ml, 18 h) attenuated the inhibitory effect of D2-selective, but not D1-selective, dopamine agonists. In addition, forskolin-stimulated adenylyl cyclase activity was inhibited by D2-selective, but not D1-selective, agonists. Neither D1- nor D2-selective agonists stimulated adenylyl cyclase activity in the cells, although cyclase activity was stimulated by forskolin, carbachol, and vasoactive intestinal peptide. DMPP-stimulated Ca2+ uptake was inhibited by both D1- and D2-selective dopamine agonists. PCR analysis was used to determine which of the dopamine receptor subtypes within the D1-like and D2-like subfamilies was responsible for the observed inhibition. PCR analysis indicated that mRNA for only D4 and D5 dopamine receptor subtypes was present in chromaffin cells. These combined data suggest that D1- and D2-selective agonists inhibit Ca2+ uptake and catecholamine secretion by activating D4 and D5 dopamine receptors on chromaffin cells.  相似文献   

3.
Abstract: Adrenal chromaffin cells contain at least two subtypes of nicotinic acetylcholine receptors (nAChRs). These studies were designed to identify and characterize the subtype of nAChR mediating adrenal catecholamine release using the monoclonal antibody mAb35, which recognizes the α-subunit of muscle nAChRs and cross-reacts with some neuronal nAChRs. Immunocytochemical studies demonstrated that mAb35 interacts with specific sites on cultured chromaffin cells. Pretreatment with mAb35 reduced nAChR-stimulated catecholamine release (IC50 of ∼10 n M ). mAb35 had no effects on release stimulated through non-nAChR mechanisms. Unlike agonist-induced nAChR desensitization, the mAb35-induced reduction in nAChR-mediated secretion developed slowly. Although not immediately reversible, nAChR-stimulated release recovered after mAb35 removal. However, unlike recovery from agonist pretreatment, recovery from mAb35 pretreatment was relatively slow and was partially blocked by vinblastine. Hybridization of adrenal chromaffin RNA with a rat α3 cDNA revealed two strong bands and two fainter bands: two higher-molecular-weight bands, 6.9 and 8.5 kb; a strong band of 3.2 kb; and a lower amount of a 2.3-kb RNA. With recovery of nAChR function after agonist or mAb35 treatment, no significant effects on α3 subunit mRNA levels were seen. In summary, these studies demonstrate the presence of mAb35-nAChRs on adrenal chromaffin cells and provide evidence that these receptors represent the major population that regulates secretory events in adrenal chromaffin cells.  相似文献   

4.
Cells of the adrenal medulla release not only catecholamines but also high concentrations of neuropeptides and nucleotides. Chromaffin cells, like many neuronal cells, have a diversity of receptors: adrenergic receptors, peptide receptors, histamine receptors, and dopamine receptors. We recently reported that these cells have nucleotide receptors that can mediate inhibition of the secretory response. The present studies show that adenosine, in the presence of enabling concentrations of forskolin, can potently enhance response to nicotinic stimulation. Neither adenosine nor forskolin alone produces a significant effect. A marked rise in intracellular cyclic AMP (cAMP) concentration is associated with the enhancement of secretion caused by forskolin plus adenosine. A phosphodiesterase inhibitor, Ro 20-1724, used together with forskolin produces significant increases in both cellular cAMP content and catecholamine secretion. However, the adenosine agonist 5'-N-ethylcarboxyadenosine elevates cellular cAMP content in the presence of forskolin without having any positive effect on secretion. This finding suggests that the rise in cAMP level may not be the sole cause of the increase in secretion by adenosine.  相似文献   

5.
Eighteen endogenous opioid peptides, all containing the sequence of either Met5- or Leu5-enkephalin, were tested for their ability to modify nicotine-induced secretion from bovine adrenal chromaffin cells. ATP released from suspensions of freshly isolated cells was measured with the luciferin-luciferase bioluminescence method as an index of secretion. None of the peptides affected 5 microM nicotine-induced ATP release at 10 nM. Three peptides inhibited secretion at 5 microM: dynorphin1-13, dynorphin1-9, and rimorphin inhibited by 65%, 37%, and 29% respectively. Use of peptidase inhibitors (bestatin, thiorphan, bacitracin, or 1,10-phenanthroline) did not result in any of the other peptides showing potent actions on the nicotinic response, although bestatin and thiorphan did enhance the inhibitory actions of dynorphin1-13 and dynorphin1-9 by 20-30%. Nicotine-induced secretion of endogenous catecholamines from bovine chromaffin cells cultured for 3 days was also studied to assess any selective actions of the peptides on adrenaline or noradrenaline cell types. Dynorphin1-13 was 1,000-fold more potent than Leu5-enkephalin at inhibiting endogenous catecholamine secretion. Dynorphin1-13 was slightly more potent at inhibiting noradrenaline release than adrenaline release whereas Leu5-enkephalin showed the opposite selectivity. The structure-activity relationships of opioid peptide actions on the chromaffin cell nicotinic response are discussed in relation to the properties of the adrenal opioid binding sites.  相似文献   

6.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

7.
Desensitization of catecholamine (CA) release from cultured bovine adrenal chromaffin cells was studied to characterize the phenomenon of desensitization and to attempt an elucidation of the mechanism(s) involved in this phenomenon at the level of the isolated chromaffin cell. Prior exposure of chromaffin cells to nicotinic cholinergic agonists [acetylcholine (ACh) or nicotine] caused a subsequent depression or desensitization of CA release during restimulation of the cells with the same agonists. Rates of development of and recovery from nicotinic desensitization were in the minute time range and the magnitude of nicotinic desensitization of CA release was greater at 37 degrees C than at 23 degrees C. ACh- (or nicotine)-induced desensitization was shown to be the result of two processes: (1) a Ca2+-dependent component of desensitization, possibly due to a depletion of intracellular CA stores and (2) a Ca2+-independent, depletion-independent component of desensitization. Prior exposure of cultured chromaffin cells to an elevated concentration of K+ also resulted in desensitization of K+-induced CA release in these cells. K+-induced desensitization was completely Ca2+-dependent and was shown to be the result, at least in part, of a mechanism that is independent of depletion of CA stores.  相似文献   

8.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

9.
Abstract: There is increasing evidence that members of the natriuretic peptide family display sympathoinhibitory activity, but it remains uncertain which receptor pathway is implicated. We performed cyclic GMP production studies with chromaffin cells treated with either atrial natriuretic factor (ANF) or C-type natriuretic peptide (CNP) and found that these cells specifically express the ANF-R1C but not the ANF-R1A receptor subtype. Evidence for the existence of ANF-R2 receptors was obtained from patch-clamp experiments where C-ANF, an ANF-R2-specific agonist, inhibited nicotinic currents in single isolated chromaffin cells. Involvement of ANF-R2 receptors in the modulation of nicotinic currents was further supported by the significant loss of this inhibitory activity after the cleavage of the disulfide-bridged structure of C-ANF. This linearized form of C-ANF also displayed a lower binding affinity for ANF-R2 receptors. Like the patch-clamp studies, secretion experiments demonstrated that both CNP and C-ANF are equally effective in reducing nicotine-evoked catecholamine secretion by cultured chromaffin cells, raising the possibility that this effect of CNP is predominantly mediated by the ANF-R2 and not the ANF-R1C receptors. Finally, this response appears to be specific to nicotinic agonists because neither histamine- nor KCI-induced secretions were affected by natriuretic peptides. In the present study, we report (1) the presence of ANF-R1C and ANF-R2 receptor subtypes in bovine chromaffin cells, (2) the inhibition by natriuretic peptides of nicotinic whole-cell currents as well as nicotine-induced catecholamine secretion, (3) the possible mediation of these effects by the ANF-R2 class of receptors, and (4) the specificity of this inhibition to nicotinic agonists. Because bovine chromaffin cells release ANF, BNP, and CNP together with catecholamines, all three peptides might exert negative feedback regulation of catecholamine secretion in an autocrine manner by interacting with the nondiscriminating ANF-R2 receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号