首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以津春2号黄瓜为材料,采用营养液水培的方法,研究了外源一氧化氮(NO)对黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响.结果表明,(1)正常生长条件下添加NO能促进黄瓜幼苗生长,而添加亚甲基蓝(MB-1)显著抑制黄瓜幼苗的生长;(2)添加NO显著缓解了NaCl胁迫对黄瓜幼苗生长的抑制,提高根系还原型谷胱甘肽(GSH)含量、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,而氧化型谷胱甘肽(GSSG)含量略有下降,同时缓解了NaCl胁迫下抗坏血酸(ASA)含量的下降幅度;(3)NaCl胁迫下添加NO的同时添加MB-1可部分解除NO的作用,与NaCl胁迫下单独添加NO处理比较,GR活性、GSH和ASA含量均降低,GSSG含量提高,APX先升高后下降.研究发现,外源NO可能通过鸟苷酸环化酶(cGC)介导来调节NaCl胁迫下黄瓜幼苗根系GR活性和GSH、GSSG、ASA含量,提高抗氧化酶活性和非酶抗氧化物质含量,增强植株对活性氧的清除能力,减少膜脂过氧化,缓解NaCl胁迫对黄瓜幼苗造成的伤害.  相似文献   

2.
采用营养液水培的方法,研究了外源一氧化氮(nitric oxide,NO)对50 mmol?L-1NaCl胁迫下黄瓜(Cucu-mis sativusL.)幼苗根系和叶片内硝酸还原酶(nitrate reductase,NR)活性、硝态氮(NO3--N)、铵态氮(NH4 -N)及可溶性蛋白含量的影响.结果表明:100μmol?L-1外源NO供体硝普钠(sodium nitroprusside,SNP)能明显提高NaCl胁迫下黄瓜幼苗叶片和根系内NR的活性,缓解由于盐胁迫造成的NO3--N含量的下降,减少NH4 -N在植株体内的过量积累,提高渗透调节物质可溶性蛋白的含量,从而减轻由于盐胁迫对黄瓜幼苗植株造成的伤害.  相似文献   

3.
以黄瓜(Cucumis sativusL.)品种津绿3号为材料,采用营养液水培法,研究了外源γ-氨基丁酸(GABA)对NaCl胁迫下幼苗生长和活性氧(ROS)代谢的影响.结果表明,NaCl胁迫处理显著抑制了幼苗的生长,叶片抗氧化酶活性、活性氧含量显著提高;营养液添加GABA处理不但缓解了NaCl胁迫对幼苗生长的抑制作用,且叶片SOD、POD和CAT活性显著高于NaCl处理,而O-·2产生速率、MDA含量却显著低于NaCl处理;5 mmol·L-1GA-BA处理缓解NaCl胁迫对幼苗伤害的效果好于2.5 mmol·L-1GABA处理.表明NaCl胁迫下,GABA参与了黄瓜幼苗活性氧的代谢过程,对增强幼苗耐盐性有重要作用.  相似文献   

4.
采用营养液水培的方法,研究了外源一氧化氮(Nitricoxide,NO)对50mmol·L^-1 NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响。结果表明:10~4001μmol·L^-1 NO供体硝普钠(Sodium nitroprusside,SNP)能显著缓解NaCl胁迫对黄瓜植株造成的伤害,100μmol·L^-1 SNP缓解效果最好,可提高幼苗的生长量,增强幼苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性,提高了叶片叶绿素和脯氨酸(Pro)含量、净光合速率(Pn)、蒸腾速率(n)及气孔导度(Gs);降低了叶片丙二醛(MDA)和过氧化氢(H2O2)的含量、超氧阴离子(O2^-)的产生速率、质膜透性和胞间二氧化碳浓度(Ci)。  相似文献   

5.
采用营养液水培的方法,研究了外源一氧化氮(Nitric oxide, NO)对50mmol•L-1NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响。结果表明:10~400μmol•L-1 NO供体硝普钠(Sodium nitroprusside, SNP)能显著缓解NaCl胁迫对黄瓜植株造成的伤害,100μmol•L-1 SNP缓解效果最好,可提高幼苗的生长量,增强幼苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性,提高了叶片叶绿素和脯氨酸(Pro)含量、净光合速率(Pn)、蒸腾速率(Tr)及气孔导度(Gs);降低了叶片丙二醛(MDA)和过氧化氢(H2O2)的含量、超氧阴离子(O•-2)的产生速率、质膜透性和胞间二氧化碳浓度(Ci)。  相似文献   

6.
采用水培法,研究了外源一氧化氮(NO)对黄瓜幼苗生长和渗透调节物质含量的影响。结果表明:正常生长条件下添加外源NO能促进黄瓜幼苗生长,而添加NO信号传递途径关键酶——鸟苷酸环化酶抑制剂亚甲基蓝(MB-1)显著抑制了黄瓜幼苗的生长;盐胁迫条件下,添加外源NO明显缓解了盐胁迫对黄瓜幼苗生长的抑制,与单独盐处理比较,株高、茎粗、鲜质量、干质量显著增加,渗透调节物质如可溶性糖、可溶性蛋白和脯氨酸含量明显提高,而MB-1能够不同程度地消除NO的这些调节作用;NO对盐胁迫下黄瓜幼苗生长影响大于正常生长条件下黄瓜幼苗,NO的作用可能是通过鸟苷酸环化酶介导的。  相似文献   

7.
NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响   总被引:24,自引:4,他引:24  
利用盆栽实验研究了 Na Cl胁迫条件下 AM真菌对棉花生长和叶片保护酶系统的影响。结果表明 :在土壤中加入 0、0 .1%、0 .2 %、0 .3%浓度 Na Cl条件下 ,Na Cl胁迫对 AM真菌的接种效果有显著影响。接种 AM真菌提高了棉花根系菌根侵染率 ,增加了棉株的生物产量 ,以 0~ 0 .2 % Na Cl浓度时 AM真菌接种效果最好。 AM真菌对棉株生理参数和保护酶活性的影响因生育期和 Na Cl浓度不同而异 ,现蕾期和低盐浓度 (0~ 0 .1% )下叶片叶绿素含量明显增加 ;中高盐水平 (0 .2 %~ 0 .3% )和生育后期叶片可溶性蛋白质含量和 SOD、POD、CAT等保护酶活性显著提高 ,MDA含量明显降低 ;棉株 K、Ca、Mg含量因植株部位和盐浓度不同而变化。 AM真菌增强宿主植物的耐盐性可能源于促进宿主根系对土壤矿质元素吸收的直接作用和改善植物体内离子平衡和生理代谢活动、提高保护酶活性的间接作用  相似文献   

8.
采用水培方法研究了LaCl3对硝酸盐胁迫下黄瓜幼苗生长及叶片抗氧化酶活性的影响.结果表明:硝酸盐胁迫显著抑制了黄瓜幼苗的生长,尤其是地上部生长.在处理7 d时,与对照相比,硝酸盐胁迫下的黄瓜单株地上部鲜质量降低了12.77 g,叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性升高,而抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)活性显著降低.外加低浓度(0.05 mmol·L-1)LaCl3可以显著提高硝酸盐胁迫下黄瓜幼苗单株鲜质量,比硝酸盐胁迫下提高了35%左右,还提高了叶片热稳定蛋白含量及SOD、POD、CAT、APX、DHAR、GR活性,降低了电解质渗漏率及丙二醛(MDA)含量,在一定程度上缓解了硝酸盐对黄瓜幼苗生长的抑制作用.但外加高浓度LaCl3(0.5 mmol·L-1)长期处理对黄瓜硝酸盐胁迫的缓解效果并不明显.因此外加一定浓度的LaCl3可通过提高黄瓜抗氧化酶活性及热稳定蛋白含量来缓解硝酸盐胁迫.  相似文献   

9.
NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响   总被引:4,自引:0,他引:4  
以国内首个藜麦自育品种"陇藜1号"为材料,采用温室盆栽法,以蒸馏水处理作为共同对照(CK),分别用100、200、300、400和500mmol/L NaCl水溶液处理藜麦种子和盆栽幼苗,通过测定种子萌发指标及处理后第5、10、15天藜麦幼苗叶片叶绿素、可溶性糖、脯氨酸、MDA含量及抗氧化酶活性,分析NaCl胁迫对藜麦生长发育及其生理特性的影响,探讨藜麦的耐盐生理机制。结果表明:(1)随NaCl浓度的升高,藜麦种子发芽率、发芽势、发芽指数和活力指数先升高后下降,且在200 mmol/L NaCl处理下种子各发芽指标均达到最高,比CK分别升高了6.40%、28.18%、20.77%和30.91%。(2)随NaCl浓度的升高,藜麦幼苗根部和茎部生长均受到抑制,且茎部生长受到抑制程度大于根部。(3)随NaCl浓度的升高和处理时间的延长,藜麦幼苗叶片叶绿素含量先升高后下降,可溶性糖、脯氨酸和MDA含量逐渐升高,SOD、POD、CAT和APX活性增强。研究发现,低浓度盐胁迫处理可增加藜麦幼苗叶片内渗透调节物质含量,增强抗氧化酶活性,清除多余活性氧,从而促进幼苗根系生长,提高幼苗耐旱性;初步推断藜麦耐盐阈值为200~300mmol/L NaCl。  相似文献   

10.
外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响   总被引:21,自引:10,他引:11  
以2个耐盐性不同的番茄品种为材料,研究了外源NO供体硝普钠(SNP)处理对100mmol·L-1NaCl胁迫下番茄幼苗生长和光合作用的影响。结果表明:外源NO能使盐胁迫下的番茄幼苗叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)升高,胞间CO2浓度(Ci)下降,叶绿素荧光参数Fv/Fm、Fv/Fo和T1/2增高,脯氨酸和可溶性糖含量升高。可见,外源NO有利于番茄幼苗对光能的捕获和转换,促进番茄的生长,降低盐胁迫对番茄的抑制作用。  相似文献   

11.
Acid phosphatases (E.C.3.1.3.2) are a group of enzymes widely distributed in nature, which nonspecifically catalyze the hydrolysis of a variety of phosphate esters in pH ranges from 4 to 6 and play a major role in the supply and metabolism of phosphate in plants. The objective of the present study was to investigate the in vitro effects of some metals on the activity of acid phosphatase in cucumber seedlings (Cucumis sativus L.) and to determine their kinetic parameters. The enzyme was assayed with Hg, Cd, Mn, Pb, Zn, K and Na at the 0.001–1 mM range using ATP, PPi and β-glycerol phosphate as substrates. Mn, Na and Cd did not significantly alter the enzyme activity. K caused a broad activation at low concentrations and an inhibition at high concentrations (10 mM) and lead caused no inhibition. Acid phosphatase was inhibited by Hg and Zn and the inhibition type and IC50 values were determined for these metals. Hg presented a mixed inhibition type with PPi and ATP as substrates and uncompetitive inhibition with β-glycerol phosphate as substrate. Zn presented competitive inhibition for ATP as substrate, and a mixed inhibition type with PPi and β-glycerol phosphate as substrate. IC50 values were 0.02, 0.3 and 0.15 mM for Hg, and 0.056, 0.035 and 0.24 mM for Zn with ATP, PPi and β-glycerol phosphate as substrates, respectively. Analysis of these results indicates that Zn is a more potent inhibitor of acid phosphatase from cucumbers than Hg.  相似文献   

12.
Treatment of diphenyl ether herbicide acifluorfen-Na (AF-Na) to intact cucumber (Cucumis sativus L cv Poinsette) seedlings induced overaccumulation of protoporphyrin IX in light (75 mumole m-2 s-1). The extra-plastidic protoporphyrin IX accumulated during the light exposure disappeared within two hours of transfer of acifluorofen-treated seedlings to darkness. The dark disappearance was due to re-entry of migrated protoporphyrin IX into the plastid and its subsequent conversion to protochlorophyllide. In light, protoporphyrin IX acted as a photosensitizer and caused generation of active oxygen species. The latter caused damage to the cellular membranes by peroxidation of membrane lipids that resulted in production of malondialdehyde. Damage to the plastidic membranes resulted in damage to photosystem I and photosystem II reactions. Dark-incubation of herbicide-sprayed plants before their exposure to light enhanced photodynamic damage due to diffusion of the herbicide to the site of action. Compared to control, in treated samples the cation-induced increases in variable fluorescence/maximum fluorescence ratio and increase in photosystem II activity was lower due to reduced grana stacking in herbicide-treated and light-exposed plants.  相似文献   

13.
Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H2S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H2S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H2S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H2S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H2S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H2S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins.  相似文献   

14.
The effects of potassium cyanide (KCN) pretreatment on the response of cucumber (Cucumis sativus L.) plants to salt, polyethylene glycol (PEG) and cold stress were investigated in the present study. Here, we found that KCN pretreatment improved cucumber seedlings tolerance to stress conditions with maximum efficiency at a concentration of 20 µM. The results showed that pretreatment with 20 µM KCN alleviated stress‐induced oxidative damage in plant cells and clearly induced the activity of alternative oxidase (AOX) and the ethylene production. Furthermore, the structures of thylakoids and mitochondria in the KCN‐pretreated seedlings were less damaged by the stress conditions, which maintained higher total chlorophyll content, photosynthetic rate and photosystem II (PSII) proteins levels than the control. Importantly, the addition of the AOX inhibitor salicylhydroxamic acid (1 mm ; SHAM) decreased plant resistance to environmental stress and even compromised the cyanide (CN)‐enhanced stress tolerance. Therefore, our findings provide a novel role of CN in plant against environmental stress and indicate that the CN‐enhanced AOX might contribute to the reactive oxygen species (ROS) scavenging and the protection of photosystem by maintaining energy charge homoeostasis from chloroplast to mitochondria.  相似文献   

15.
The effects of 6-benzylaminopurine (6-BA) on plant growth, net photosynthetic rate, relative chlorophyll content, soluble protein, carbohydrates contents and antioxidant systems of cucumber (Cucumis sativus L.) under low-light environment were investigated using two different cucumber cultivars. The results showed that the weak light resulted in the remarkable decrease in plant net photosynthetic rate, relative chlorophyll content, soluble protein and carbohydrates contents, but promoted the superoxide dismutase and guaiacol peroxidase activities. However, application of 6-BA alleviated the reduction of the correlative parameters and mediated the changes of antioxidant systems. The potential mechanisms may involve the following aspects: 6-BA clearly enhanced the plants’ tolerance to low light by increasing chlorophyll content, reducing the production of superoxide radical (O 2 ·? ), and enhancing the quenching of hydrogen peroxide (H2O2), consequently alleviating the injury of photosynthetic system, and further increasing the efficiency of CO2 assimilation, producing more carbohydrates which can meet the growth need of cucumber. Meanwhile, the present study indicated that cucumber of Europe mini type (Chunqiuwang) was more tolerant to low light than HuaNan type (Huza No.3).  相似文献   

16.
The growth and differentiation of callus tissues derived from cotyledons of ten cultivars ofCucumis sativus L. were investigated. Cotyledonary explants from all ten cultivars formed callus tissue on Murashige and Skoog (MS) medium supplemented with 0.5 M 2,4-dichlorophenoxyacetic acid and 5 M 6-benzylaminopurine. Fresh weight of the callus tissues averaged 1 to 8 g per flask after five weeks of culture. Shoot development was achieved in three cultivars, Hukchinju, Manchoonchoungjang and Seoul, on MS medium supplemented with 0.5 M -naphthaleneacetic acid and 5 M 6-benzylaminopurine. Reducing the 6-benzylaminopurine concentration to 0.01 M resulted in root formation on callus tissues and on shoots transferred to this medium. All cultivars gave the same response in tests of root formation, but shoot regeneration from callus culture of cucumber cotyledons was dependent on genotype with cultivar Manchoonchoungjang exhibiting the best shoot differentiation capability among the genotypes examined. Examination of mitotic metaphase from the regenerants revealed that all were tetraploid.  相似文献   

17.
Zucchini yellow mosaic virus (ZYMV) routinely causes significant losses in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). ZYMV resistances from the cucumber population TMG1 and the melon plant introduction (PI) 414723 show different modes of inheritance and their genetic relationships are unknown. We used molecular markers tightly linked to ZYMV resistances from cucumber and melon for comparative mapping. A 5-kb genomic region (YCZ-5) cosegregating with the zym locus of cucumber was cloned and sequenced to reveal single nucleotide polymorphisms and indels distinguishing alleles from ZYMV-resistant (TMG1) and susceptible (Straight 8) cucumbers. A low-copy region of the YCZ-5 clone was hybridized to bacterial artificial chromosome (BAC) clones of melon and a 180-kb contig assembled. One end of this melon contig was mapped in cucumber and cosegregated with ZYMV resistance, demonstrating that physically linked regions in melon show genetic linkage in cucumber. However the YCZ-5 region segregated independently of ZYMV resistance loci in two melon families. These results establish that these sources of ZYMV resistances from cucumber TMG1 and melon PI414723 are likely non-syntenic.  相似文献   

18.
Summary 2,4-Dinitrophenol and paranitrophenol are two major soil pollutants which are known to be metabolized by different soil microbes. Relative phytotoxicities of these parent compounds and their metabolic transformation products to the growth of cucumber seedlings were assessed. It was evident that such microbial transformations widely occurring in the soil are effective detoxification reactions and are beneficial for the plants.  相似文献   

19.
The adaptive responses of the greening process of plants to temperature stress were studied in cucumber (Cucumis sativus L. cv. Poinsette) seedlings grown at ambient (25 °C), low (7 °C) and high (42 °C) temperatures. Plastids isolated from these seedlings were incubated at different temperatures and the net syntheses of various tetrapyrroles were monitored. In plastids isolated from control seedlings grown at 25 °C, the optimum temperature for synthesis of Mg-protoporphyrin IX monoester or protochlorophyllide was 35 °C. Temperature maxima for Mg-protoporphyrin IX monoester and protochlorophyllide syntheses were shifted to 30 °C in chill-stressed seedlings. The net synthesis of total tetrapyrroles was severely reduced in heat-stressed seedlings and the optimum temperature for Mg-protoporphyrin IX monoester or protochlorophyllide synthesis shifted slightly towards higher temperatures, i.e. a broader peak was observed. To further study the temperature acclimation of seedlings with respect to the greening process, tetrapyrrole biosynthesis was monitored at 25 °C after pre-heating the plastids (28–70 °C) isolated from control, chill- and heat-stressed seedlings. In comparison to 28 °C-pre-heated plastids the percent inhibition of protochlorophyllide synthesis in 40 °C-pre-heated plastids was higher than for the control (25 °C-grown) in chill-stressed seedlings and lower than for the control in heat-stressed seedlings. Maximum synthesis of total tetrapyrroles and protoporphyrin IX was observed when chloroplasts were heated at 50 °C, which was probably due to heat-induced activation of the enzymes involved in protoporphyrin IX synthesis. Prominent shoulders towards lower or higher temperatures were seen in chill-stressed or heat-stressed seedlings, respectively. The shift in optimum temperature for tetrapyrrole biosynthesis in chill- and heat-stressed seedlings was probably due to acclimation of membranes possibly undergoing desaturation or saturation of membrane lipids. Proteins synthesized in response to temperature-stress may also play an important role in conferring stress-tolerance in plants. Received: 8 October 1998 / Accepted: 19 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号