首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluoride-mediated activation of guinea pig neutrophils   总被引:1,自引:0,他引:1  
In guinea pig peritoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

2.
Guanine nucleotide-binding regulatory proteins (G proteins) transduce a remarkably diverse group of extracellular signals to a relatively limited number of intracellular target enzymes. In the neutrophil, transduction of the signal following fMet-Leu-Phe receptor-ligand interaction is mediated by a pertussis toxin substrate (Gi) that activates inositol-specific phospholipase C. We have utilized a plasma membrane-containing fraction from unstimulated human neutrophils as the target enzyme to explore the role of G proteins in arachidonate and cytosolic cofactor-dependent activation of the NADPH-dependent O-2-generating oxidase. When certain guanine nucleotides or their nonhydrolyzable analogues were present during arachidonate and cytosolic cofactor-dependent activation, they exerted substantial dose-dependent effects. The GTP analogue, GTP gamma S, caused a 2-fold increase in NADPH oxidase activation (half-maximal stimulation, 1.1 microM). Either GDP or its nonhydrolyzable analogue, GDP beta S, inhibited up to 80% of the basal NADPH oxidase activation (Ki GDP = 0.12 mM, GDP beta S = 0.23 mM). GTP caused only slight and variable stimulation, whereas F-, an agent known to promote the active conformation of G proteins, caused a 1.6-fold stimulation of NADPH oxidase activation. NADPH oxidase activation in the cell-free system was absolutely and specifically dependent on Mg2+. Although O2- production in response to fMet-Leu-Phe was inhibited greater than 90% in neutrophils pretreated with pertussis toxin, cytosolic cofactor and target oxidase membranes from neutrophils treated with pertussis toxin showed no change in basal- or GTP gamma S-stimulated NADPH oxidase activation. Cholera toxin treatment of neutrophils also had no effect on the cell-free activation system. Our results suggest a role for a G protein that is distinct from Gs or Gi in the arachidonate and cytosolic cofactor-dependent NADPH oxidase cell-free activation system.  相似文献   

3.
In the chain of events by which chemotactic peptides stimulate NADPH oxidase-catalyzed superoxide formation in human neutrophils, the involvements of a pertussis toxin-sensitive guanine nucleotide-binding protein (N-protein), mobilization of intracellular calcium and protein kinase C stimulation have been proposed. Superoxide formation was studied in membranes from human neutrophils; NADPH oxidase was stimulated by arachidonic acid in the presence of neutrophil cytosol. Fluoride and stable GTP analogues, such as GTP gamma S and GppNHp, which all activate N-proteins, enhanced NADPH oxidase activity up to 4-fold. GDP beta S inhibited the effect of GTP gamma S. These data suggest that NADPH oxidase is regulated by an N-protein, independent of an elevation of the cytoplasmic calcium concentration.  相似文献   

4.
Superoxide anion (O2-) production stimulated by concanavalin A (Con A) in guinea pig polymorphonuclear leukocytes (PMNL) was suppressed by addition of methyl-alpha-mannoside, a Con A inhibitor, and resumed upon readdition of Con A. The reversible change in the O2- production was assumed to reflect the change in NADPH oxidase activity measured for the 30,000 X g particulate fraction. The stimulation by Con A of the phosphorylation of 46K protein(s), as observed previously with several membrane-perturbing agents in parallel with an activation of NADPH oxidase in intact guinea pig PMNL (Okamura, N., et al. (1984) Arch. Biochem. Biophys. 228, 270-277), was also suppressed by methyl-alpha-mannoside and resumed upon readdition of Con A. Similar parallelism between the phosphorylation and NADPH oxidase activity was also observed in the case of stimulation by N-formyl-methionyl-leucyl-phenylalanine (FMLP) and phorbol 12-myristate 13-acetate (PMA), though both processes were reversible after the stimulation by FMLP but not reversible after that by PMA. Thus, such a parallelism observed in both intact PMNL and 30,000 X g particulate fraction indicates possible involvement of the protein phosphorylation in the regulation of the production of active oxygen metabolites in PMNL.  相似文献   

5.
Evidences have been provided in our laboratory that in neutrophils different signal transduction sequences for the activation of O2(-)-forming NADPH oxidase can be triggered by the same stimulus (Biochem. Biophys. Res. Commun. 1986, 135, 556-565; 1986, 135, 785-794; 1986, 140, 1-11). The results presented here show that the transduction sequence triggered by fluoride via dissociation of G-proteins and involving messengers produced by stimulation of phosphoinositide turnover, Ca2+ changes and translocation of protein kinase C from the cytosol to the plasmamembrane, can be bypassed when a primed state of neutrophils is previously induced. In fact: i) fluoride causes a pertussis toxin insensitive and H-7 sensitive respiratory burst in human neutrophils, which is linked to the activation of hydrolysis of PIP2, rise in [Ca2+]1 and translocation of PKC. In Ca2+-depleted neutrophils these responses to fluoride do not occur and are restored by addition of CaCl2. ii) The pretreatment of Ca2+-depleted unresponsive neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase by fluoride but not the turnover of phosphoinositides and PKC translocation. The nature of the alternative transduction sequence, the reactions different from phospholipase C activated by G-protein for the alternative sequence and the role of these discrete pathways for NADPH oxidase activation are discussed.  相似文献   

6.
Treatment of guinea pig polymorphonuclear leukocytes (PMNL) with phorbol 12-myristate 13-acetate (PMA) induced an increase in phosphorylation of 46 kDa protein(s) in parallel with activation of NADPH oxidase. In response to PMA stimulation, phosphorylated 46 kDa protein(s) increased markedly in the membrane fraction, accompanied by a decrease in the unphosphorylated form(s) in the cytosol. The results indicate that the 46 kDa protein(s) may be translocated concomitantly with its phosphorylation. On the other hand, in a cell-free activation system reconstituted from the cytosol and plasma membranes of unstimulated PMNL, arachidonic acid caused the translocation of the 46 kDa protein(s) from the cytosol to the plasma membranes concomitantly with an enhancement of NADPH oxidase activity. These results suggest that activation of NADPH oxidase is dependent on an association of 46 kDa protein(s) with the membranes both in intact PMNL and in the cell-free system.  相似文献   

7.
Evidences have been provided by many laboratories that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) is strictly linked to a transduction pathway that involves the stimulation, via GTP binding protein, of the phosphoinositide turnover and the increase in [Ca2+]i. The results presented in this paper demonstrate that FMLP can activate the NADPH oxidase by triggering a transduction pathway completely independent of phosphoinositide turnover and Ca2+ changes. In fact: i) Ca2+-depleted neutrophils do not respond to FMLP with the activation of phosphoinositide hydrolysis and NADPH oxidase. Both the responses are restored by the addition of exogenous Ca2+. ii) In Ca2+-depleted neutrophils phorbol-myristate-acetate (PMA) activates the NADPH oxidase. iii) The pretreatment of Ca2+-depleted neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase but not of the turnover of phosphoinositides by FMLP. This priming effect of PMA and the role of this phosphoinositide and Ca2+-independent pathway for the stimulation of the NADPH oxidase by receptors mediated stimuli are discussed.  相似文献   

8.
The principal sulfatide of a group of acidic lipids from virulent Mycobacterium tuberculosis, sulfolipid-1 (SL-1), stimulates neutrophil superoxide (O2-) generation and, at lower concentrations, primes neutrophil response to several other metabolic agonists including FMLP, and PMA. These responses to SL-1 were examined in relation to diacylglycerol (DAG) generation, Ca2+ availability and activation of guanine nucleotide binding proteins to clarify the signal transduction pathways involved. Pertussis toxin inhibited the ability of SL-1 to both stimulate neutrophils directly and to prime neutrophils for subsequent responses induced by PMA, suggesting a role for one or more guanine nucleotide regulating proteins in both responses. SL-1 induced a rise in neutrophil DAG levels. DAG generation was inhibited by pretreatment of cells with pertussis toxin. Depletion of extracellular Ca2+ ablated O2- release induced by stimulatory levels of SL-1 but did not inhibit the priming effect induced by substimulatory concentrations of the lipid. Investigation of the activation of the neutrophil NADPH oxidase in a cell-free system revealed that the SL-1-priming effect was associated with translocation of the soluble cytosolic factors required for activation of the enzyme. Cytosolic factor translocation was not observed in pertussis toxin pretreated cells. Our results provide evidence for the role of a guanine nucleotide binding protein in both priming and direct activation of neutrophils by SL-1. This G protein regulates both SL-1-induced DAG generation and cytosolic cofactor translocation involved in neutrophil activation and priming. The multiplicity of effects of SL-1 on signal transduction pathways leading to phagocyte activation and priming may exert a profound influence on the pathogenicity of M. tuberculosis.  相似文献   

9.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

10.
In an attempt to elucidate properties and activation mechanisms of the NADPH oxidase system, which is known to be responsible for the production of superoxide anion (O2-) in cell membranes of polymorphonuclear leukocytes (PMNL), intact guinea pig PMNL were treated with glutaraldehyde, a protein crosslinking reagent, before or after stimulation with phorbol 12-myristate 13-acetate (PMA). Then, PMNL were disrupted and NADPH oxidase activity was measured. After the treatment of resting PMNL with glutaraldehyde, NADPH oxidase was no longer activated by PMA. On the other hand, the NADPH oxidase activity enhanced by PMA in advance was markedly retained by the glutaraldehyde treatment of such PMA-stimulated PMNL as compared to that in untreated cells. Similar retention by glutaraldehyde of the stimulated NADPH oxidase activity was observed in PMNL stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP) and cytochalasin D. Furthermore, the oxidase activity of glutaraldehyde-treated PMNL was stable during incubation at 37 degrees C, the half life of the oxidase activity of the treated PMNL being more than 90 min whereas that of the untreated PMNL is about 15 min. This ability of the glutaraldehyde treatment to retain the activity was also observed against inactivation by high concentrations of NaCl and by positively charged alkylamine.  相似文献   

11.
Phosphorylation of a 47 kDa protein in human neutrophils is induced by phorbol 12-myristate 13-acetate (PMA), opsonized latex beads, fMet-Leu-Phe, calcium ionophore A23187 and fluoride. All of these stimuli activate the specialized microbicidal respiratory burst of neutrophils, and in each case the kinetics of activation correspond with the kinetics of phosphorylation of the 47 kDa protein. Trifluoperazine (50 microM) and chlorpromazine (100 microM), inhibitors of calmodulin and protein kinase C, abolish the increase in oxygen consumption and selectively prevent phosphorylation of the 47 kDa protein after PMA stimulation. Treatment of neutrophils with pertussis toxin totally inhibits both superoxide production and phosphorylation of this protein in response to fMet-Leu-Phe, but not in response to PMA, indicating that a GTP-binding protein modulates the fMet-Leu-Phe receptor signal. Phosphorylation of the 47 kDa protein, a phenomenon absent from the neutrophils of subjects with autosomal recessive chronic granulomatous disease, which lack the respiratory burst, appears to be the common trigger for activation of the burst in normal neutrophils.  相似文献   

12.
Activation of the membrane-associated NADPH oxidase in intact human neutrophils requires a receptor-associated heterotrimeric GTP-binding protein that is sensitive to pertussis toxin. Activation of this NADPH oxidase by arachidonate in a cell-free system requires an additional downstream pertussis toxin-insensitive G protein (Gabig, T. G., English, D., Akard, L. P., and Schell, M. J. (1987) (J. Biol. Chem. 262, 1685-1690) that is located in the cytosolic fraction of unstimulated cells (Gabig, T. G., Eklund, E. A., Potter, G. B., and Dykes, J. R. (1990) J. Immunol. 145, 945-951). In the present study, immunodepletion of G proteins from the cytosolic fraction of unstimulated neutrophils resulted in a loss of the ability to activate NADPH oxidase in the membrane fraction. The activity in immunodepleted cytosol was fully reconstituted by a partially purified fraction from neutrophil cytosol that contained a 21-kDa GTP-binding protein. Purified human recombinant Krev-1 p21 also completely reconstituted immunodepleted cytosol whereas recombinant human H-ras p21 or yeast RAS GTP-binding proteins had no reconstitutive activity. Rabbit antisera raised against a synthetic peptide corresponding to the effector region of Krev-1 (amino acids 31-43) completely inhibited cell-free NADPH oxidase activation, and this inhibition was blocked by the synthetic 31-43 peptide. An inhibitory monoclonal antibody specific for ras p21 amino acids 60-77 (Y13-259) had no effect on cell-free NADPH oxidase activation. Activation of the NADPH oxidase in intact neutrophils by stimulation with phorbol myristate acetate caused a marked increase in the amount of membrane-associated antigen recognized by 151 antiserum on Western blot. Thus a G protein in the cytosol of unstimulated neutrophils antigenically and functionally related to Krev-1 may be the downstream effector G protein for NADPH oxidase activation. This system represents a unique model to study molecular interactions of a ras-like G protein.  相似文献   

13.
Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells.  相似文献   

14.
Parabutoporin (PP) affects motility and NADPH oxidase activity in normal human polymorphonuclear neutrophils and in granulocytic HL-60 cells. These PP-induced interactions utilize a Rac activation pathway. PP induces chemotaxis of neutrophils and HL-60 cells via a pertussis toxin-sensitive way, thus using trimeric G-proteins. The enhanced chemotaxis is also apparent in undifferentiated HL-60 cells which lack functional formyl peptide receptors. On the other hand, PP strongly reduces the superoxide production by the NADPH oxidase complex after either PMA or fMLP activation of granulocytes. These combined results strongly suggest a direct activation of G-proteins and subsequent Rac activation as the basis for the observed effects. The unexpected inhibitory effect of PP, despite Rac activation, on superoxide production in granulocytes is explained by the direct interaction of membrane localized PP which prevents the formation of a functional NADPH oxidase complex.  相似文献   

15.
Partial purification of the cytosolic factors which are required for the activation of O2- producing enzyme (NADPH oxidase) was performed using guinea pig neutrophils. Three active cytosolic factors were obtained by using the combination of IEC-SP (cation-exchange) and IEC-QA (anion-exchange) HPLC. One factor (termed SP-1e which was adsorbed on IEC-SP column, somewhat activated the NADPH oxidase by itself. The molecular weight of SP-1 was estimated to be approximately 260 kDa. In contrast, the other two factors (termed QA-1 and QA-2, respectively), which were adsorbed on IEC-QA column, did not activate the NADPH oxidase by themselves but activated the enzyme only in the presence of SP-1. When three factors were combined, they activated the oxidase synergistically, and the activity recovered was almost the same as that observed with the unfractionated cytosol. These results suggest that at least three different cytosolic factors are required for the full activation of NADPH oxidase in guinea pig neutrophils.  相似文献   

16.
The addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) to human peripheral blood neutrophils primes phospholipase D (PLD) to subsequent stimulation by N-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). The present investigation was directed at the elucidation of the pathway(s) involved in the regulation of the activity of PLD in untreated as well as in GM-CSF-primed neutrophils. Pretreatment with pertussis toxin (PT) totally inhibited fMLP-induced activation of PLD in control or GM-CSF-treated cells. PT did not affect the activation of PLD by PMA but inhibited the priming effect of GM-CSF. Activation of PLD by fMLP was dose-dependently inhibited by erbstatin, an inhibitor of tyrosine kinases. Furthermore, pre-incubation with GM-CSF accelerated the tyrosine phosphorylation response to fMLP (as analysed by protein immunoblot with antiphosphotyrosine antibodies). In PMA-stimulated neutrophils, erbstatin antagonized the priming effect of GM-CSF on PLD without affecting the direct effects of the phorbol ester. Buffering cytoplasmic calcium with the chelator BAPTA inhibited fMLP-induced activation of PLD as monitored by the formation of phosphatidylethanol. The stimulation of PLD by PMA was partially attenuated in BAPTA-loaded cells while the priming effect of GM-CSF was abolished. Thus, priming of human neutrophil PLD by GM-CSF may be mediated by G-proteins, by increases in the levels of cytosolic free calcium, and by stimulation of protein kinase C and/or tyrosine kinase(s).  相似文献   

17.
Protein kinase C may be important in leukocyte function, because it is activated by phorbol myristate acetate (PMA), a potent stimulus of the respiratory burst in neutrophils. The localization of protein kinase C was compared in unstimulated and PMA-stimulated human neutrophils. Protein kinase C was primarily cytosolic in unstimulated cells but became associated with the particulate fraction after treatment of cells with PMA. The particulate-associated kinase activity did not require added calcium and lipids, but when extracted by Triton X-100 (greater than or equal to 0.2%), calcium and phospholipid dependence could be demonstrated. The EC50 of PMA for stimulating kinase redistribution and activation of NADPH oxidase, the respiratory burst enzyme, were similar (30 to 40 nM). Redistribution of protein kinase C occurred rapidly (no lag) and preceded NADPH oxidase activation (30 sec lag). These results suggest that redistribution of protein kinase C is linked to activation of the respiratory burst in human neutrophils.  相似文献   

18.
NADPH oxidase activity in a membrane fraction prepared from phorbol 12-myristate 13-acetate (PMA)-stimulated guinea pig polymorphonuclear leukocytes (PMNL) was inhibited by positively charged myristylamine. The inhibitory effect of myristylamine was significantly suppressed by simultaneous addition of a negatively charged fatty acid, such as myristic acid. However, the suppression by myristylamine was not sufficiently restored when myristic acid was added later. On the other hand, pretreatment of PMA-stimulated PMNL with glutaraldehyde, a protein crosslinking reagent, stabilized NADPH oxidase activity against inhibition by myristylamine, but not against that by p-chloromercuribenzenesulfonic acid. In a cell-free system of reconstituted plasma membrane and cytosolic fractions prepared from unstimulated PMNL, arachidonic acid-stimulated NADPH oxidase activity was also inhibited by myristylamine. During the activation of NADPH oxidase by PMA in intact PMNL and by arachidonic acid in the cell-free system, cytosolic activation factor(s) translocated to plasma membranes. The bound cytosolic activation factor(s) was released from the membranes by myristylamine, accompanied by a loss of NADPH oxidase activity. It is plausible from these results that the inhibitory effect of alkylamine on NADPH oxidase is due to induction of the decoupling and/or dissociation of the cytosolic activation component(s) from the activated NADPH oxidase complex by increments of positive charges in the membranes, and that the glutaraldehyde treatment prevents the dissociation of component(s).  相似文献   

19.
Syndecan-4 participates in focal adhesion by non-G protein-dependent activation of protein kinase C. Ligation of syndecan-4 with antithrombin elicits pertussis toxin-sensitive chemotaxis of leukocytes. As activation of protein kinase C stimulates release of sphingosine-1-phosphate, a chemoattracting G protein-coupled receptor agonist, we studied directional migration of leukocytes in response to phorbol myristate acetate (PMA), a direct activator of protein kinase C. Human peripheral blood neutrophils, monocytes, and lymphocytes were purified and tested for chemotactic migration in micropore filter assays in response to PMA. Dose-dependent stimulation of migration was seen only when leukocytes were exposed to concentration gradients of PMA; in the absence of such a gradient, inhibition of random migration was induced. Dimethylsphingosine inhibited PMA-induced leukocyte chemotaxis, indicating that activation of sphingosine kinase for enhanced production of sphingosine-1-phosphate mediates the chemotactic response to PMA. Pertussis toxin abrogated the chemotactic response to PMA, suggesting involvement of G protein-coupled sphingosine-1-phosphate receptor. Dimethylsphingosine also inhibited leukocyte chemotaxis toward antithrombin, indicating that similar mechanisms may be involved upon syndecan-4 ligation. Data show that protein kinase C-dependent activation of sphingosine kinase may play a central role in leukocyte chemotaxis toward non-G protein-coupled receptor agonists.  相似文献   

20.
Neutrophil-like HL-60 cells reacted to N -formyl- l -Methionyl- l -Leucyl- l -P henylalanine (f MLP) with a rise in the intracellular calcium concentration ([Ca2]i), NADPH oxidase activation, and increased superoxide anion (O2-) production. [Ca2+]i mobilization and superoxide production were largely dependent on extracellular calcium (Ca2+]e) and a capacitative calcium entry. The monomeric G-protein, Rac-1, regulates NADPH oxidase activity. We tested the effect of removal of Ca2+]e on Rac-1 plasma membrane sequestration and activation of NADPH oxidase using immunodetection and a double labelling fluorescent method. Results showed that Rac-1 activation is mediated via a pertussis toxin (PTX)-sensitive heteromeric G-protein pathway, and that Rac-1 membrane sequestration was preceded by [Ca2+]i mobilization following entry of Ca2+ e. Therefore, we propose that O2- production is dependent on activation of PTX-sensitive G-proteins and sequestration of Rac-1 in the plasma membrane, following entry of Ca2+ e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号