首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

MicroRNA-21 (miR-21) plays an important role in the pathogenesis and progression of liver fibrosis. Here, we determined the serum and hepatic content of miR-21 in patients with liver cirrhosis and rats with dimethylnitrosamine-induced hepatic cirrhosis and examined the effects of miR-21 on SPRY2 and HNF4α in modulating ERK1 signaling in hepatic stellate cells (HSCs) and epithelial-mesenchymal transition (EMT) of hepatocytes.

Methods

Quantitative RT-PCR was used to determine miR-21 and the expression of SPRY2, HNF4α and other genes. Immunoblotting assay was carried out to examine the expression of relevant proteins. Luciferase reporter assay was performed to assess the effects of miR-21 on its predicted target genes SPRY2 and HNF4α. Primary HSCs and hepatocytes were treated with miR-21 mimics/inhibitors or appropriate adenoviral vectors to examine the relation between miR-21 and SPRY2 or HNF4α.

Results

The serum and hepatic content of miR-21 was significantly higher in cirrhotic patients and rats. SPRY2 and HNF4α mRNA levels were markedly lower in the cirrhotic liver. MiR-21 overexpression was associated with enhanced ERK1 signaling and EMT in liver fibrosis. Luciferase assay revealed suppressed SPRY2 and HNF4α expression by miR-21. Ectopic miR-21 stimulated ERK1 signaling in HSCs and induced hepatocyte EMT by targeting SPRY2 or HNF4α. Downregulating miR-21 suppressed ERK1 signaling, inhibited HSC activation, and blocked EMT in TGFβ1-treated hepatocytes.

Conclusions

MiR-21 modulates ERK1 signaling and EMT in liver fibrosis by regulating SPRY2 and HNF4α expression. MiR-21 may serve as a potentially biomarker as well as intervention target for hepatic cirrhosis.  相似文献   

2.
3.
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.  相似文献   

4.
Kang HW  Wang F  Wei Q  Zhao YF  Liu M  Li X  Tang H 《FEBS letters》2012,586(6):897-904
miR-20a is an important member of the miR-17-92 cluster, and its real function in cervical cancer cells is unknown. Our study demonstrated that miR-20a was upregulated in cervical cancer tissues. Overexpression of miR-20a in cervical cancer-derived cell lines, HeLa and C-33A, enhanced long-term cellular proliferation, migration and invasion, whereas inhibition of miR-20a suppressed those functions. We also confirmed that oncogenic TNKS2 is directly upregulated by miR-20a. Furthermore, suppression of TNKS2 expression could inhibit colony formation, migration and invasion of cervical cancer cells. Therefore, we concluded that miR-20a can promote migration and invasion of cervical cancer cells through the upregulation of TNKS2.  相似文献   

5.
MicroRNA-21 (miR-21) is overexpressed in many human tumors and has been linked to various cellular processes altered in cancer. miR-21 is also up-regulated by a number of inflammatory agents, including IFN, which is of particular interest considering the close relationship between inflammation and cancer. Because miR-21 appears to be overexpressed in human melanoma, we examined the role of miR-21 in cancer development and metastasis in B16 mouse melanoma cells. We found that miR-21 is a member of an IFN-induced miRNA subset that requires STAT3 activation. To characterize the role of miR-21 in melanoma behavior, we transduced B16 cells with lentivirus encoding a miR-21 antagomir and isolated miR-21 knockdown B16 cells. miR-21 knockdown or IFN treatment alone inhibited B16 cell proliferation and migration in vitro, and in combination they had an enhanced effect. Moreover, miR-21 knockdown sensitized B16 cells to IFN-induced apoptosis. In B16 cells miR-21 targeted tumor suppressor (PTEN and PDCD4) and antiproliferative (BTG2) proteins. To characterize the role of miR-21 in vivo, empty vector- and antagomiR-21-transduced B16 melanoma cells were injected via tail vein into syngeneic C57BL/6 mice. Although empty vector-transduced B16 cells produced large lung metastases, miR-21 knockdown cells only formed small lung lesions. Importantly, miR-21 knockdown tumor-bearing mice exhibited prolonged survival compared with empty vector tumor-bearing mice. Thus, miR-21 regulates the metastatic behavior of B16 melanoma cells by promoting cell proliferation, survival, and migration/invasion as well as by suppressing IFN action, providing important new insights into the role of miR-21 in melanoma.  相似文献   

6.
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.  相似文献   

7.
8.
Neurons are highly polarized cells forming an intricate network of dendrites and axons. They are shaped by the dynamic reorganization of cytoskeleton components and cellular organelles. Axon branching allows the formation of new paths and increases circuit complexity. However, our understanding of branch formation is sparse due to the lack of direct in-depth observations. Using in situ cellular cryo-electron tomography on primary mouse neurons, we directly visualized the remodeling of organelles and cytoskeleton structures at axon branches. Strikingly, branched areas functioned as hotspots concentrating organelles to support dynamic activities. Unaligned actin filaments assembled at the base of premature branches accompanied by filopodia-like protrusions. Microtubules and ER comigrated into preformed branches to support outgrowth together with accumulating compact, ∼500-nm mitochondria and locally clustered ribosomes. We obtained a roadmap of events supporting the hypothesis of local protein synthesis selectively taking place at axon branches, allowing them to serve as unique control hubs for axon development and downstream neural network formation.  相似文献   

9.

Background

In South China (Gejiu City, Yunnan Province), lung cancer incidence and associated mortality rate is the most prevalent and observed forms of cancer. Lung cancer in this area is called Gejiu squamous cell lung carcinoma (GSQCLC). Research has demonstrated that overexpression of miR-21 occurs in many cancers. However, the unique relationship between miR-21 and its target genes in GSQCLC has never been investigated. The molecular mechanism involved in GSQCLC must be compared to other non-small cell lung cancers in order to establish a relation and identify potential therapeutic targets.

Methodology/Principal Findings

In the current study, we initially found overexpression of miR-21 occurring in non-small cell lung cancer (NSCLC) cell lines when compared to the immortalized lung epithelial cell line BEAS-2B. We also demonstrated that high expression of miR-21 could increase tumor cell proliferation, invasion, viability, and migration in GSQCLC cell line (YTMLC-90) and NSCLC cell line (NCI-H157). Additionally, our results revealed that miR-21 could suppress YTMLC-90 and NCI-H157 cell apoptosis through arresting cell-cycle at G2/M phase. Furthermore, we demonstrated that PTEN, RECK and Bcl-2 are common target genes of miR-21 in NSCLC. Finally, our studies showed that down-regulation of miR-21 could lead to a significant increase in PTEN and RECK and decrease in Bcl-2 at the mRNA and protein level in YTMLC-90 and NCI-H157 cell lines. However, we have not observed any remarkable difference in the levels of miR-21 and its targets in YTMLC-90 cells when compared with NCI-H157 cells.

Conclusions/Significance

miR-21 simultaneously regulates multiple programs that enhance cell proliferation, apoptosis and tumor invasiveness by targeting PTEN, RECK and Bcl-2 in GSQCLC. Our results demonstrated that miR-21 may play a vital role in tumorigenesis and progression of lung squamous cell carcinoma and suppression of miR-21 may be a novel approach for the treatment of lung squamous cell carcinoma.  相似文献   

10.
MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21 and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells.  相似文献   

11.
12.
13.
14.
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.  相似文献   

15.
目的:研究Sprouty2(SPRY2)基因在胃癌肿瘤细胞上皮间质转化(EMT)和侵袭转移的影响。方法:体外培养人胃癌细胞(BGC-823),采用慢病毒介导的sh RNA沉默SPRY2基因,并用实时定量PCR与Western blot检测其SPRY2、E-钙黏蛋白(E-cadherin)、波形蛋白(vimentin)的表达,采用细胞划痕实验、Transwell实验检测SPRY2基因沉默后的胃癌细胞侵袭转移能力变化。结果:在慢病毒介导sh RNA沉默SPRY2基因的人胃癌BGC-823细胞中,SPRY2的m RNA和蛋白表达明显降低(P0.05),SPRY2沉默后人胃癌细胞E-cadherin的蛋白表达增多(P0.05),vimentin的蛋白表达减少(P0.05)。此外,SPRY2沉默后,胃癌细胞迁移能力和侵袭能力明显减弱(P值均P0.05)。结论:Sprouty-2基因通过调节E-cadherin与vimentin的表达参与胃癌细胞的上皮-间质转化,进而促进胃癌细胞的迁移与侵袭。  相似文献   

16.
17.
Overexpression of the oncomir miR-21 is associated with many cancers, including breast cancer. Elevated levels of Jagged-1 (JAG1), a predicted miR-21 target, are implicated in estrogen receptor negative (ER-) breast cancer. We demonstrate (by ablation of the miR-21 binding site in the JAG1 3'UTR) that miR-21 directly targets and represses JAG1 levels in MCF-7 (ER+) breast cancer cells. MiR-21 targeting of JAG1 in MDA-MB-231 (ER-) breast cancer cells is dependent on miR-21 dosage (levels). In both cell lines, miR-21 and JAG1 expression levels were negatively correlated due to their regulatory relationship. In addition, 17beta-estradiol (E2) increases JAG1 levels by limiting (via downregulating miR-21 levels) the repressive effects of miR-21 on the JAG1 3'UTR. Our results reveal a regulatory interplay between miR-21, JAG1 and E2 that is important for advancing understanding of how the oncogenic potential of miR-21 and JAG1 manifests in different sub-types of breast cancer.  相似文献   

18.
During development, axons are guided to their appropriate targets by a variety of guidance factors. On arriving at their synaptic targets, or while en route, axons form branches. Branches generated de novo from the main axon are termed collateral branches. The generation of axon collateral branches allows individual neurons to make contacts with multiple neurons within a target and with multiple targets. In the adult nervous system, the formation of axon collateral branches is associated with injury and disease states and may contribute to normally occurring plasticity. Collateral branches are initiated by actin filament– based axonal protrusions that subsequently become invaded by microtubules, thereby allowing the branch to mature and continue extending. This article reviews the current knowledge of the cellular mechanisms of the formation of axon collateral branches. The major conclusions of this review are (1) the mechanisms of axon extension and branching are not identical; (2) active suppression of protrusive activity along the axon negatively regulates branching; (3) the earliest steps in the formation of axon branches involve focal activation of signaling pathways within axons, which in turn drive the formation of actin-based protrusions; and (4) regulation of the microtubule array by microtubule-associated and severing proteins underlies the development of branches. Linking the activation of signaling pathways to specific proteins that directly regulate the axonal cytoskeleton underlying the formation of collateral branches remains a frontier in the field.  相似文献   

19.
Accumulating evidence suggests small non-coding RNAs (microRNAs) play important roles in human cancer progression. In the present study, we found miR-150 was overexpressed in gastric cancer cell lines and tissues. Ectopic expression of miR-150 promoted tumorigenesis and proliferation of gastric cancer cells. Luciferase reporter assay demonstrated that EGR2 was a direct target of miR-150. Collectively, our study demonstrated that overexpression of miR-150 in gastric cancer could promote proliferation and growth of cancer cells at least partially through directly targeting the tumor-suppressor EGR2, suggesting a potential strategy for the development of miRNA-based treatment of gastric cancer.  相似文献   

20.
MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3′UTR is a functional target of miR-21 and that the 18 bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号