首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis.  相似文献   

2.
Summary Stable genetic transformation of embryogenic cultures of Abies nordmanniana (Nordmann fir or Caucasian fir) was achieved using the Biolistic? transformation technology, followed by regeneration of transgenic plants. Selection of the transgenic tissue was based on the antibiotic resistance induced by the neomycin phosphotransferase II gene (npt II), in combination with the antibiotic geneticin. Six transclones were recovered from a total of 215 bombardments. Expression of the β-glucuronidase gene (uidA) was confirmed by histochemical analysis, and expression of npt II was verified by quantification of NPTII protein by enzyme linked immunosorbent assay (ELISA). Both genes were still expressed in the embryogenic tissue after 5 yr of in vitro culture and in mature somatic embryos and plants produced from these cultures. The integration of npt II was confirmed by Southern hybridization in embryogenic tissue after 5 yr of culture. After 5 yr of growth, uidA was still expressed in needles from the transformed trees.  相似文献   

3.
A protocol for Agrobacterium-mediated transformation was developed for embryogenic callus of an excellent climber species, Parthenocissus tricuspidata. A. tumefaciens strain EHA105 or C58 harboring the pCAMBIA2301 binary vector with the neomycin phosphotransferase (nptII) and β-glucuronidase (uidA) gene was used. Factors affecting the transformation efficiency, including the Agrobacterium strains, co-cultivation time, Agrobacterium concentration, and infection time, were evaluated. Strain EHA105 proved to be significantly better than C58, and 4 days of co-culture was critical for transformation. An Agrobacterium suspension at a concentration of 0.5–0.7 × 108 cells ml−1 (OD600 = 0.5–0.7) and an infection time of 40 min was optimal for transformation. By applying these optimized parameters, we recovered six independent transformed shoots that were kanamycin-resistant and contained the nptII gene, as verified by polymerase chain reaction (PCR) analysis. Southern blot analysis confirmed that T-DNA was stably integrated into the genome of three out of six PCR-positive lines. Furthermore, histochemical GUS assay revealed the expression of the uidA gene in kanamycin-resistant calli, somatic embryos, and leaves of transgenic plants.  相似文献   

4.
The stable transformation of embryogenic tissues of Pinus nigra Arn., cell line E104, has been achieved using a biolistic approach. The introduced DNA consisted of the uidA reporter gene under the control of the double CaMV 35S promoter and the nptII selection gene controlled by the single CaMV 35S promoter. Three days after bombardment, putative transformed tissues were selected for continued proliferation on a medium containing 20 mg geneticin l−1. Resistant embryogenic tissue recovery required 10–12 weeks. The integration of the nptII and uidA genes was confirmed by both histochemical/fluorimetric GUS assays and PCR amplification of the inserts in the five geneticin resistant sub-lines of line E104. The activity of the uidA reporter gene in transgenic, embryogenic tissue lines was stable and could be detected after one year of culture. Somatic embryo maturation was, however, poor and no plantlet regeneration could be obtained.  相似文献   

5.
A biolistic particle delivery system was used to genetically transform embryogenic tissue of Pinus radiata. The introduced DNA contained a uidA reporter gene under the control of either the tandem CaMV 35S or the artificial Emu promoter, and the npt II selectable marker controlled by the CaMV 35S promoter. The average number of stable, geneticin-resistant lines recovered was 0.5 per 200 mg fresh weight bombarded tissue. Expression of the uidA reporter gene was detected histochemically and fluorimetrically in transformed embryogenic tissue and in derived mature somatic embryos and regenerated plants. The integration of uidA and npt II genes into the Pinus radiata genome was demonstrated using PCR amplification of the inserts and Southern hybridisation analysis. The expression of both genes in transformed tissue was confirmed by Northern hybridisation analysis. More than 150 transgenic Pinus radiata plants were produced from 20 independent transformation experiments with four different embryogenic clones. Received: 9 May 1997 / Revision received: 18 September 1997 / Accepted: 18 October 1997  相似文献   

6.
A protocol for the production of transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] was developed via Agrobacterium-mediated genetic transformation of somatic embryos. Two disarmed Agrobacterium tumefaciens strains, EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT with the nptII gene and gus-intron were evaluated as vector systems. A number of parameters were tested with respect to maximizing transformation efficiency. While pre-culture, wounding and acetosyringone treatment were inhibitory, the bacterial growth phase (optical density; OD600 = 0.6), cell density (109/ml), co-cultivation period (5 days) and pH of the co-cultivation medium (5.6) had positive effects on transformation. Following co-cultivation, globular somatic embryos were placed on multiplication medium and stressed with kanamycin (50 µg/ml). Further selection occurred in the maturation and germination medium at an elevated kanamycin level (75 µg/ml). An average of 40% transient expression was evident based on the GUS histochemical assay. Kanamycin-resistant, GUS-positive embryos were germinated, and the resulting microshoots were multiplied in vitro. Integration of the transgenes into the tea nuclear genome was confirmed by PCR analysis using nptII- and gus-specific primers and by Southern hybridization using an nptII-specific probe. The transgenic shoots were micrografted onto seed-grown rootstocks of cv. Kangra Jat and eventually hardened in a walk-in polyhouse. This is the first report on the production of transgenic tea.  相似文献   

7.
8.
An Agrobacterium tumefaciens-mediated transformation protocol has been developed for embryogenic cell cultures of Pinus radiata. Transgenic lines were only produced when embryogenic tissue was placed on nurse tissue during the Agrobacterium co-cultivation and recovery stages of the procedure. Plantlets were regenerated via somatic embryogenesis from ten of the 11 transgenic lines tested and at least 20 of each line were planted in a GMO glasshouse. Expression of the nptII, uidA and bar genes in up to ten plants of each individual transgenic line was evaluated by molecular, biochemical and functional analysis. As expected, expression of the nptII gene varied among the ten lines, while within ten replicates of the same line, nptII expression appeared to be consistent, with the exception of one line, K3. Likewise, the level of GUS activity varied among transgenic lines, but was relatively consistent in plants derived from the same tissue, except for two lines, G4 and G5. Moreover, similar absolute values and pattern of gene expression of uidA was observed in the transgenic plants, for two consecutive years. Plantlets from eight lines survived a spray treatment with the equivalent of 2 kg/ha and 4 kg/ha of the commercial formulation Buster, whereas non-transformed controls died. Southern hybridisation analysis of embryogenic tissue and green needle tissue from putative transgenic lines demonstrated a relatively low number of gene insertions (from one to nine) of both the bar and nptII genes in the nine transgenic lines tested.  相似文献   

9.
In banana and plantain research, it is essential to establish embryogenic cell suspensions together with a highly efficient regeneration and transformation system. This article describes the development of an embryogenic cell suspension (ECS), regeneration, and transformation for plantain cv. “Gonja manjaya”. ECS was established using highly proliferative multiple buds. The frequency of embryogenic friable callus formation was 56.8% of the cultured explants. Friable embryogenic calli with many translucent proembryos were transferred to liquid medium and homogenous cell suspensions were established within 3–4 mo. Approximately 25,000 to 30,000 plants per 1.0 ml of settled cell volume were regenerated in approximately 13–14 mo. ECSs were transformed using Agrobacterium strain EHA 105 harboring the binary vector pBI121. About 50–60 transgenic plants per 0.5 ml settled cell volume were regenerated on selective medium containing 100 mg l−1 kanamycin. Histochemical GUS assays using different tissues of putatively transformed plants demonstrated stable expression of uidA gene. The presence and integration of the uidA gene were confirmed by PCR and Southern blot analysis, respectively. This is the first report showing establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation of an important plantain cultivar, “Gonja manjaya”. This study shows the huge potential for genetic transformation of plantains for disease or pest resistance, as well as tolerance to abiotic factors such as drought stress using this robust regeneration and transformation protocol.  相似文献   

10.
Somatic embryogenesis was induced in expanding leaf explants excised from epicormic shoots forced from branch segments taken at four different times of year from a mature oak (Quercus robur L.). Branch segments 2–4 cm in diameter produced most shoots when collected in March. Somatic embryos were induced on explants derived from branches of all collection dates, although collection in November seemed to afford the best results. Germination and conversion ability of embryos of embryogenic lines derived from six oak trees depended heavily on genotype, conversion rates ranging from 0 to 70%. RAPD analyses found no evidence of genetic variation either within or between the embryogenic lines established from three of these trees, or between these lines and the trees of origin, or between somatic embryo derived plantlets and the trees of origin. The embryogenic system used in this study appears to be suitable for true-to-type clonal propagation of mature oak genotypes.  相似文献   

11.
An efficient and reproducible system for Agrobacterium-mediated transformation of the pear (Pyrus communis L.) cultivar Spadona was developed. Leaf explants of in vitro propagated plants were cocultivated with the disarmed Agrobacterium strain EHA105 harboring the plasmid pME504, carrying the uidA-intron and nptII genes. Under selective conditions, 5% of the plantlets regenerated and were positively stained for GUS. However, most of the GUS-positive plants re-callused and subsequently died, leaving only 0.3–0.8% of these plantlets to reach maturity. In order to identify transformed shoots at early stages of regeneration, we introduced the green fluorescent protein (GFP) into the pear cultivar Spadona using the plasmid PZP carrying the nuclear-targeted GFP and nptII genes. High expression levels of GFP were detected in transgenic cells as early as 7 days after transformation. GFP marked-callii and transformed plants were observed after 14 and 24 days, respectively. Fluorescence microscopy screening of transformed plant material, under the selection of kanamycin, increased the transformation frequency to 3.0–4.0%. We conclude that the introduction of GFP improves the selection of transformed plants of Spadona pear.  相似文献   

12.
Key factors influencing the efficiency of transformation of embryogenic cultures, induced from immature zygotic embryos, of avocado cv. ‘Duke 7’ were evaluated. Initially, the sensitivity of somatic embryos to the antibiotics kanamycin, used for selection, carbenicillin, cefotaxime and timentin, all used for elimination of Agrobacterium cells, were evaluated. Isolated globular somatic embryos were more sensitive to kanamycin than embryogenic masses, and 25 mg l−1 kanamycin completely restricted callus proliferation. Cefotaxime at 500 mg l−1 partially inhibited proliferation of embryogenic cultures, while both carbenicillin and timentin did not affect callus growth. For genetic transformation, somatic embryos were infected with A. tumefaciens containing the pBINUbiGUSint plasmid. After 2 days, the embryos were transferred to selection medium supplemented with 50 mg l−1 kanamycin and 250 mg l−1 timentin for 2 months. Then, kanamycin level was increased to 100 mg l−1 for two additional months. The A. tumefaciens strain AGL1 yielded higher transformation rates, 6%, than EHA105 or LBA4404, 1.2%. The percentage of kanamycin resistant calli obtained was significantly influenced by the embryogenic line used as source of explants. Genetic transformation was confirmed by PCR and Southern blot analysis. A significant improvement in the germination rate was obtained when transgenic embryos were cultured in liquid MS medium with 4.44 μM BA and 2.89 μM GA3 for 3 days in a roller drum and later transferred to the same medium gelled with 7 g l−1 agar. Plants from five independent transgenic lines were acclimated and grown in the greenhouse, being phenotipically similar to control plants.  相似文献   

13.
Summary An elite aspen hybrid (Populus × canescens × P. grandidentata) was transformed with Agrobacterium tumefaciens strain EHA105 that harbored a binary vector (pBI121) carrying the nptII gene under the nos promoter and tandem rolB-uidA (GUS) genes with the CaMV 35S or heat shock promoter. Among 32 independent kanamycin-resistant plants, 25 plants were confirmed by polymerase chain reaction and Southern blot analyses to contain all three genes, whereas five plants contained only nptII or/and uidA genes and two plants had both the rolB and nptII or uidA genes. Integration of the rolB gene significantly increased rooting ability of hardwood cuttings. Heat shock-rolB-transformed plants rooted at significantly higher percentage than the CaMV 35S-rolB-transformed plants. Heat shock treatment further enhanced rooting of heat shock-rolB-transformed plants. Exposure to exogenous auxin did not significantly increase the rooting percentage of transgenic hardwood cuttings, but increased the number of roots induced. This research shows great potential to improve rooting of hardwood cuttings of difficult-to-root woody plants which are commercially important to the horticultural and forestry industry. The transgenic plants with gain-of-function in hardwood-cutting rooting can facilitate research in the understanding of adventitious rooting from hardwood cuttings of recalcitrant woody plants.  相似文献   

14.
Establishment of an efficient protocol for regeneration and genetic transformation is required in banana for the incorporation of useful traits. Therefore an efficient method has been developed for somatic embryogenesis, plant regeneration and transformation of Cavendish banana cultivar Robusta (AAA). Embryogenic cell suspension culture (ECS) was established using immature male flowers. Percentage appearance of embryogenic callus and distinct globular embryos was 10.3 and 11.1, respectively. ECS obtained was cocultivated under different cocultivation conditions with Agrobacterium tumefaciens strain EHA105 harboring pCAMBIA 1301 plant expression vector. Up to 30 transgenic plants/50 mg settled cell volume (SCV) was obtained with cocultivation in semisolid medium whereas no transgenics could be obtained with parallel experiments carried out in liquid medium. Histochemical GUS assay in different tissues of putatively transformed plants demonstrated expression of uidA gene. Among the putatively transformed plants obtained, a set of 4 were confirmed by PCR analysis and stable integration of the transgene by Southern analysis. GUS specific activity measured by a MUG (4-methylumbelliferyl-β-d-glucuronide) based flourometric assay revealed increase in transient GUS expression in semisolid as well as liquid cocultivation with centrifugation. This is the first report showing somatic embryogenesis and Agrobacterium tumefaciens mediated transformation using embryogenic cell suspension cultures in an important Cavendish banana cultivar Robusta. The present protocol will make possible agronomic improvement of this important commercially grown cultivar by introduction of disease resistance characteristics and antisense-mediated delayed fruit ripening strategies. Further, it will also assist in functional characterization of new gene or promoter elements isolated from this or other cultivars of banana.  相似文献   

15.
A procedure for inducing somatic embryos in shoot apex explants (2 mm) excised from shoot proliferation cultures established from adult oak trees (Quercus robur) was investigated. Embryogenesis was induced in shoot tip as well as leaf explants in three out of the five genotypes evaluated. Somatic embryos were formed by culture in induction medium supplemented with 21.48 μM naphthalene acetic acid and 2.22 μM benzyladenine for 8 weeks, and successive transfer of explants to expression media with a low concentration of growth regulators and without them. Both types of explants formed callus tissue from which somatic embryos developed, indicating indirect embryogenesis. Although the embryogenic frequencies were lower than 12%, it did not prevent the establishment of clonal embryogenic lines maintained by repetitive embryogenesis. Histological study confirmed an indirect somatic embryogenesis process from shoot tip explants, in which leaf primordia and the corresponding axial zones were involved in generating callus, whereas the apical meristem itself did not proliferate. The origin of embryogenic cells appeared to be associated with dedifferentiation of certain parenchymal cells in callus regions after transfer of explants to expression media without auxin. Division of embryogenic cells gave rise to proembryo aggregates of unicellular origin, although a multicellular origin from bulging embryogenic areas would also seem possible. Further development led to the formation of cotyledonary-stage somatic embryos and nodular embryogenic structures that may be considered as anomalous embryos with no clear bipolarity. Inducement of somatic embryos from explants isolated from shoot cultures ensures plant material all year round, thus providing a significant advantage over the use of leaf explants from field-grown trees.  相似文献   

16.
An efficient protocol for genetic transformation of somatic embryos of Quercus robur by selection in a temporary immersion system is reported. The transformation frequency was 5 times higher than achieved by conventional culture on semi-solid medium, ranging between 6 and 26 % for the four genotypes evaluated. Clumps of globular or torpedo somatic embryos were precultured for 7–10 days, inoculated with Agrobacterium tumefaciens strain EHA105:p35SGUSINT and cocultivated for 4 days before being cultured for 4 weeks on semi-solid selection medium supplemented with 25 mg L?1 kanamycin. Explants were transferred to RITA® bioreactors and subjected to a two-step selection protocol involving immersion in liquid medium supplemented with 25 mg L?1 kanamycin, for 18 weeks, and then with 75 mg L?1 kanamycin. Putatively transformed explants appeared after serial transfer to selection medium over 12–16 weeks. The presence of neomycin phosphotransferase II and β-glucuronidase genes in the plant genome was confirmed by histochemical and molecular analysis, and the copy number was determined by Southern blotting and real-time quantitative polymerase chain reaction. Transformed somatic embryos were germinated and transferred to soil for acclimatization, approximately 8 months after inoculation of the original tissue with bacteria. As the limiting factor for recovery of plants from oak embryogenic lines is the low embryo conversion rate, axillary shoot lines were established from transformed germinated embryos. Transformed embryos and shoots were cultured in medium with or without kanamycin and the responses to several morphogenetic processes (recovery after cryopreservation, germination, shoot proliferation, and rooting) were evaluated.  相似文献   

17.
A highly efficient and reproducible protocol was developed to obtain transgenic Alstroemeria plants by combining Agrobacterium tumefaciens with friable embryogenic callus (FEC). To develop this transformation method, factors such as infection time, cocultivation period, effect of acetosyringone (AS), different dilution concentrations of the bacterium and temperature during cocultivation were evaluated. A protocol was developed in which transient GUS expression activity was observed ranging from 25% to 55% out of the cocultivated FEC cultures, when FEC cultures were infected for 30 min with 50 μM AS, 1:10 dilution of bacteria, and then cocultivated at 24°C in the dark for 7 days with Agrobacterium strain LBA4404 (pTOK233) that carried gus, nptII and hpt genes. Seven independent experiments produced a total of 1300 transformed somatic embryos with shoots from 3.5 g of FEC. Of these germinated embryos, 50% developed into plants in vitro. Thus, on average, 500 mg of FEC infected with A. tumefaciens produced approximately 80–100 transgenic plants within 6–8 months via a selection process with 2.5–20 mg L?1 hygromycin. Additionally, transformation was also performed with Agrobacterium strain AGL1 (containing the uidA and ppt genes), and this showed that luciferase‐based selection was less detrimental to the transgenic lines than was herbicide‐based selection. The transformation efficiency was 18.6% for the luciferase‐based selection and 7.6% for the PPT‐based selection, although with luciferase‐based selection, more false positives were obtained (about a quarter of the lines were escapes). The nptII and uidA genes were detected by polymerase chain reaction analysis in nine of the 19 tested lines. The results indicate that the system developed here can be used as an alternative to particle bombardment of Alstroemeria.  相似文献   

18.
Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.  相似文献   

19.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

20.
Agrobacterium tumefaciens strain LBA4404 containing the plasmid pBI121, carrying the reporter gene uidA and the kanamycin resistance gene nptII, was used for gene transfer experiments in selenium (Se)-hyperaccumulator Astragalus racemosus. The effects of kanamycin on cell growth and division and acetosyringone on transformation efficiency were evaluated. The optimal concentration of kanamycin that could effectively inhibit cell growth and division in non-transgenic tissues was 50 mg l−1 and thus all putative transgenic plants were obtained on induction medium containing 50 mg l−1 kanamycin. The verification of transformants was achieved by both histochemical GUS assay and PCR amplification of nptII gene. Southern blot analysis was performed to further confirm that transgene nptII was stably integrated into the A. racemosus genome. A transformation frequency of approximately 10% was achieved using this protocol, but no beneficial effect from the addition of acetosyringone (50 μM) was observed. This transformation system will be a useful tool for future studies of genes responsible for Se-accumulation in A. racemosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号