首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tsx-p2 promoter is one of at least seven Escherichia coli promoters that are activated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and negatively regulated by the CytR repressor. DNase I footprinting assays were used to study the interactions of these regulatory proteins with the tsx-p2 promoter region and to characterize tsx-p2 regulatory mutants exhibiting an altered response to CytR. We show that the cAMP-CRP activator complex recognizes two sites in tsx-p2 that are separated by 33 bp: a high-affinity site (CRP-1) overlaps the -35 region, and a low-affinity site (CRP-2) is centered around position -74 bp. The CytR repressor protects a DNA segment that is located between the two CRP sites and partially overlaps the CRP-1 target. In combination, the cAMP-CRP and CytR proteins bind cooperatively to tsx-p2, and the nucleoprotein complex formed covers a region of 78 bp extending from the CRP-2 site close to the -10 region. The inducer for the CytR repressor, cytidine, does not prevent in vitro DNA binding of CytR, but releases the repressor from the nucleoprotein complex and leaves the cAMP-CRP activator bound to its two DNA targets. Thus, cytidine interferes with the cooperative DNA binding of cAMP-CRP and CytR to tsx-p2. We characterized four tsx-p2 mutants exhibiting a reduced response to CytR; three carried mutations in the CRP-2 site, and one carried a mutation in the region between CRP-1 and the -10 sequence. Formation of the cAMP-CRP-CytR DNA nucleoprotein complex in vitro was perturbed in each mutant. These data indicate that the CytR repressor relies on the presence of the cAMP-CRP activator complex to regulate tsx-p2 promoter activity and that the formation of an active repression complex requires the combined interactions of cAMP-CRP and CytR at tsx-p2.  相似文献   

2.
3.
4.
Activation of the cAMP receptor protein (CRP) from Escherichia coli is highly specific to its allosteric ligand, cAMP. Ligands such as adenosine and cGMP, which are structurally similar to cAMP, fail to activate wild-type CRP. However, several cAMP-independent CRP variants (termed CRP*) exist that can be further activated by both adenosine and cGMP, as well as by cAMP. This has remained a puzzle because the substitutions in many of these CRP* variants lie far from the cAMP-binding pocket (>10 A) and therefore should not directly affect that pocket. Here we show a surprising similarity in the altered ligand specificity of four CRP* variants with a single substitution in D53S, G141K, A144T, or L148K, and we propose a common basis for this phenomenon. The increased active protein population caused by an equilibrium shift in these variants is hypothesized to preferentially stabilize ligand binding. This explanation is completely consistent with the cAMP specificity in the activation of wild-type CRP. The model also predicts that wild-type CRP should be activated even by the lower-affinity ligand, adenosine, which we experimentally confirmed. The study demonstrates that protein equilibrium is an integral factor for ligand specificity in an allosteric protein, in addition to the direct effects of ligand pocket residues.  相似文献   

5.
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex.  相似文献   

6.
H Aiba  A Hanamura  T Tobe 《Gene》1989,85(1):91-97
  相似文献   

7.
8.
Of the 30 carbon starvation proteins whose induction has been previously shown to be important for starvation survival of Escherichia coli, two-thirds were not induced in cya or crp deletion mutants of E. coli at the onset of carbon starvation. The rest were induced, although not necessarily with the same temporal pattern as exhibited in the wild type. The starvation proteins that were homologous to previously identified heat shock proteins belonged to the latter class and were hyperinduced in delta cya or delta crp mutants during starvation. Most of the cyclic AMP-dependent proteins were synthesized in the delta cya mutant if exogenous cyclic AMP was added at the onset of starvation. Furthermore, beta-galactosidase induction of several carbon starvation response gene fusions occurred only in a cya+ genetic background. Thus, two-thirds of the carbon starvation proteins of E. coli require cyclic AMP and its receptor protein for induction; the rest do not. The former class evidently has no role in starvation survival, since delta cya or delta crp mutants of either E. coli or Salmonella typhimurium survived starvation as well as their wild-type parents did. The latter class, therefore, is likely to have a direct role in starvation survival. This possibility is strengthened by the finding that nearly all of the cya- and crp-independent proteins were also induced during nitrogen starvation and, as shown previously, during phosphate starvation. Proteins whose synthesis is independent of cya- and crp control are referred to as Pex (postexponential).  相似文献   

9.
10.
11.
12.
13.
How cyclic AMP and its receptor protein act in Escherichia coli   总被引:24,自引:0,他引:24  
S Adhya  S Garges 《Cell》1982,29(2):287-289
  相似文献   

14.
Plasmids pPBP and pRS-XP containing the cloned genes for the Pseudomonas aeruginosa phosphate-starvation-inducible periplasmic phosphate-binding protein and outer membrane porin P (oprP), respectively, were introduced into various Escherichia coli Pho-regulon regulatory mutants. Using Western immunoblots and specific antisera, the production of both gene products was observed to be under the control of regulatory elements of the E. coli Pho regulon. Sequencing of the region upstream of the translational start site of the oprP gene revealed a 'Pho box' with strong homology to the E. coli consensus 'Pho box', the putative binding site of the PhoB activator. Since P. aeruginosa and E. coli belong to different families and have quite different GC contents, these data suggest strong evolutionary conservation of regulatory elements of the Pho regulon.  相似文献   

15.
16.
17.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

18.
19.
20.
Shewanella oneidensis is a metal reducer that can use several terminal electron acceptors for anaerobic respiration, including fumarate, nitrate, dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), nitrite, and insoluble iron and manganese oxides. Two S. oneidensis mutants, SR-558 and SR-559, with Tn5 insertions in crp, were isolated and analyzed. Both mutants were deficient in Fe(III) and Mn(IV) reduction. They were also deficient in anaerobic growth with, and reduction of, nitrate, fumarate, and DMSO. Although nitrite reductase activity was not affected by the crp mutation, the mutants failed to grow with nitrite as a terminal electron acceptor. This growth deficiency may be due to the observed loss of cytochromes c in the mutants. In contrast, TMAO reduction and growth were not affected by loss of cyclic AMP (cAMP) receptor protein (CRP). Fumarate and Fe(III) reductase activities were induced in rich medium by the addition of cAMP to aerobically growing wild-type S. oneidensis. These results indicate that CRP and cAMP play a role in the regulation of anaerobic respiration, in addition to their known roles in catabolite repression and carbon source utilization in other bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号