首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
2.
3.
4.
5.
6.
7.
Myb-related proteins from plants to humans are characterized by a DNA-binding domain which contains two to three imperfect repeats of approximately 50 amino acids each. Based on the evolutionary conservation of specific residues, secondary structural predictions suggest an arrangement of alpha helices homologous to that seen in the homeodomains, members of the helix-turn-helix family of DNA-binding proteins. We have used molecular modelling in conjunction with site-directed mutagenesis to test the feasibility of this structure. We propose that each Myb repeat consists of three alpha helices packed over a hydrophobic core which is built around the three highly conserved tryptophan residues. The C-terminal helix forms part of the helix-turn-helix motif and can be positioned into the major groove of B-form DNA, allowing prediction of residues critical for specificity of interaction. Modelling also allowed positioning of adjacent repeats around the major groove over an 8 bp binding site.  相似文献   

8.
9.
TRF1 is a dimer and bends telomeric DNA.   总被引:25,自引:0,他引:25  
A Bianchi  S Smith  L Chong  P Elias    T de Lange 《The EMBO journal》1997,16(7):1785-1794
  相似文献   

10.
11.
The DNA-binding domain of Myb consists of three imperfect tandem repeats and the third one which is essential for sequence-specific binding was established to have a helix-turn-helix-related motif. DNA sequences recognized by Myb have been reported to contain TAACPy sequence. Here we have examined the details of Myb-binding sequence. Using DNAs with a single mutation on the various sites of two specific DNAs and some fragments of the DNA-binding domain of Myb, we have found that (i) in a specific DNA which contains only one AAC sequence, each AAC nucleotide is found to be essential for the specific binding of Myb, while any other mutations cause no serious binding loss, (ii) in a specific DNA which contains two AAC sequences separately, one AAC is not so important in the binding, and (iii) for the specific binding with DNA, at least both repeats 2 and 3 of Myb are required. These findings suggest that repeat 3 containing a helix-turn-helix-related structure recognizes the core AAC sequence and repeat 2 supports this recognition by interactions with phosphate groups of DNA.  相似文献   

12.
13.
Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB21–64) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB21–64 and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.  相似文献   

14.
15.
Telomeres are vital for preserving chromosome integrity during cell division. Several genes encoding potential telomere-binding proteins have recently been identified in higher plants, but nothing is known about their function or regulation during cell division. In this study, we have isolated and characterized a cDNA clone, pNgTRF1, encoding a putative double-stranded telomeric repeat binding factor of Nicotiana glutinosa, a diploid tobacco plant. The predicted protein sequence of NgTRF1 (Mr = 75,000) contains a single Myb-like domain with significant homology to a corresponding motif in human TRF1/Pin2 and TRF2. Gel retardation assays revealed that bacterially expressed full-length NgTRF1 was able to form a specific complex only with probes containing three or more contiguous telomeric TTTAGGG repeats. The Myb-like domain of NgTRF1 is essential, but not sufficient, to bind the telomeric repeat sequence. The glutamine-rich extreme C-terminal region, which does not exist in animal proteins, was additionally required to form a specific telomere-protein complex. The dissociation constant (Kd) of the Myb motif plus the glutamine-rich domain of NgTRF1 to the two-telomeric repeat sequence was evaluated to be 4.5 +/- 0.2 x 10-9 m, which is comparable to that of the Myb domain of human TRF1. Expression analysis showed that NgTRF1 gene activity was inversely correlated with the cell division capacity of tobacco root cells and during the 9-day culture period of BY-2 suspension cells, while telomerase activity was positively correlated with cell division. In synchronized BY-2 cells, NgTRF1 was selectively expressed in G1 phase, whereas telomerase activity peaked in S phase. These findings suggest that telomerase activity and NgTRF1 expression are differentially regulated in an opposing fashion during growth and cell division in tobacco plants. The possible physiological functions of NgTRF1 in tobacco cells are also discussed.  相似文献   

16.
Telomere-binding proteins have recently been recognised not only as necessary building blocks of telomere structure, but namely as components which are of central importance to telomere metabolism being involved in regulation of telomere length as well as in protective (capping) function of telomeres. Although the knowledge on plant telomeric DNA-binding proteins lags behind that in human and yeast, recent data show both analogies and plant-specific features in the composition and interactions of telomeric proteins. This review focuses primarily on proteins with known amino acid sequence. These can be classified into following groups: 1) the family of proteins with Myb domain at C-terminus, 2) proteins with Myb domain at N-terminus, both binding double-stranded DNA of telomeric repeats TTTAGGG, 3) the single-stranded DNA-binding proteins, and 4) other proteins that act also in non-telomeric chromatin regions. Proteins with C-terminal Myb domain reported as IBP family were previously found in human, whereas Smh family representing proteins with Myb domain at N-terminus was identified only in plants. Also RRM family of the single-stranded DNA-binding proteins is likely to be plant specific.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号