首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of C-photosynthate uptake by developing soybean fruit   总被引:1,自引:0,他引:1       下载免费PDF全文
Thorne JH 《Plant physiology》1980,65(5):975-979
By pulse-labeling field-grown soybean leaves for 60 seconds at midday with 14CO2 and then sequentially harvesting, dissecting, and extracting the radioactive fruit tissues (of pod and seeds), the route, uptake kinetics, and metabolic fate of 14C-photosynthate as it was imported by 35- to 40-day-old pods were determined. As the [14C]sucrose pulse entered the pods, the seeds became radioactive immediately but a lag of nearly 30 minutes occurred before label could be detected in the pod wall pericarp.  相似文献   

2.
Pathway of Phloem unloading of sucrose in corn roots   总被引:12,自引:8,他引:12       下载免费PDF全文
The pathway of phloem unloading and the metabolism of translocated sucrose were determined in corn (Zea mays) seedling roots. Several lines of evidence show that exogenous sucrose, unlike translocated sucrose, is hydrolyzed in the apoplast prior to uptake into the root cortical cells. These include (a) presence of cell wall invertase activity which represents 20% of the total tissue activity; (b) similarity in uptake and metabolism of [14C]sucrose and [14C]hexoses; and (c) randomization of 14C within the hexose moieties of intracellular sucrose following accumulation of [14C] (fructosyl)sucrose. Conversely, translocated sucrose does not undergo apoplastic hydrolysis during unloading. Asymmetrically labeled sucrose ([14C](fructose)sucrose), translocated from the germinating kernels to the root, remained intact indicating a symplastic pathway for unloading. In addition, isolated root protoplasts and vacuoles were used to demonstrate that soluble invertase activity (Vmax = 29 micromoles per milligram protein per hour, Km = 4 millimolar) was located mainly in the vacuole, suggesting that translocated sucrose entered via the symplasm and was hydrolyzed at the vacuole prior to metabolism.  相似文献   

3.
The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.  相似文献   

4.
The influence of anoxia on carbon transport and root respiration was evaluated by applying [U-14C]sucrose to the foliage. Translocation patterns to the root systems of two dry edible bean genotypes (Phaseolus vulgaris L.) were examined after a 3-day exposure to aerated and nonaerated environments. Localized anoxia of root systems was simulated by growing roots in split configurations and exposing half of the system to anoxic conditions. Anoxia of the root system for 72 hours reduced the movement of 14C label into the roots with concurrent accumulations in the hypocotyl region. The translocation of 14C label to anoxic roots was less than 50% of the aerated controls of both genotypes. Most of the 14C label translocated to anoxic root systems was excluded from respiratory metabolism during the 3-hour pulse/chase period and was an order of magnitude less than the aerated controls. These observations suggest that the bulk of 14C label which entered the root during the anoxic period was unavailable for metabolism by the enzymes of glycolysis and/or was diluted by a relatively large metabolite pool. A higher percentage of 14C label was translocated to the aerated half of the localized anoxia treatment relative to the half of the aerated controls. The proportion of 14C label translocated to the root system in the aerated control was 20 and 16% compared to 28 and 25% in the aerated localized anoxia treatment for the genotypes Seafarer and line 31908, respectively. Line 31908 partitioned a greater percentage of 14C-labeled compounds to the actively growing fraction of the root system in the localized anoxia treatment than did Seafarer. This suggests a greater reliance on previously stored carbohydrate for immediate root growth in Seafarer than in line 31908.  相似文献   

5.
Flag leaves of wheat plants (Triticum aestivum L. em. Thell. cv `Duke') were supplied with 14C(glucosyl)sucrose. Translocated [14C]sucrose was isolated, then hydrolyzed. Label appeared in both the hexose moieties indicating that some randomization of label had occurred. However, near the radioactive front essentially all of the 14C was in the glucose moiety, suggesting that randomization occurred after unloading, supporting the conclusion that sucrose was taken up intact by phloem and translocated unaltered.  相似文献   

6.
《Phytochemistry》1986,25(5):1111-1113
During germination serine was shown to be taken up from the endosperm by the cotyledons and partly translocated to the hypocotyl. Up to 1.7% of the [14C]serine taken up by the seedling was involved in phytosterol synthesis in which the hypocotyl was the most effective plant part. Compared with [14C]sucrose, serine was found to be 12 times more effective in this synthesis. From the data obtained it could be calculated that this amino acid may yield about 7% of all the free sterols in an etiolated seedling of Euphorbia lathyris, making this substrate a suitable marker in sterol synthesis in endospermous seedlings.  相似文献   

7.
A photoautotrophic soybean suspension culture was used to study free amino acid pools during a subculture cycle. Free amino acid analysis showed that the intracellular concentrations of asparagine, serine, glutamine, and alanine reached peaks of 200, 10, 9 and 7 mM, respectively, at specific times in the 14-day subculture cycle. Asparagine and serine levels peaked at day 14 but glutamine level rose quickly after subculture, peaking at day three and then declined gradually. Roughly similar patterns were found in the conditioned culture medium although the levels were 1000-fold lower than those found in cells. Photoautotrophic (SB-P) and photomixotrophic (SB-M) cultures were quantitatively similar with regard to free asparagine and serine but not glutamine or free ammonia. Heterotrophic (SB-H) cells had 81–85% less free asparagine on day seven than did SB-M or SB-P cells. Hence, similar to the phloem sap of a soybean plant, asparagine, glutamine, alanine and serine were the predominant amino acids in photoautotrophic soybean cell cultures. Varying the amount of total nitrogen in culture medium for two subcultures at 10, 25, 50, and 100% Of normal levels showed that growth was inhibited only at the 10 and 25% levels but that growth on medium containing 50% of the normal nitrogen was as good as that on 100% nitrogen. Moreover, cellular chlorophyll content correlated exceptionally well with initial nitrogen content of the medium. Thus, the photosynthesis of SB-P cells was not limited by chlorophyll content. SB-P cells grown for two subcultures on 10% nitrogen contained very low free amino acid levels and only 1% of the free ammonia levels found in cells growing on a full nitrogen complement.Abbreviations SB-P photoautotrophic soybean cells (no sucrose, high CO2, high light) - SB-M photomixotrophic soybean cells (1% w/v sucrose, high light) - SB-H heterotrophic soybean cells (3% sucrose, dark)  相似文献   

8.
Sink to source translocation in soybean   总被引:2,自引:1,他引:1       下载免费PDF全文
The possibility that phloem loading may occur in the reproductive sink tissues of soybeans (Glycine max Merr. cv Chippewa 64) was examined. When [14C]sucrose was applied to seed coat tissues from which the developing embryo had been surgically removed, 0.1% to 0.5% of the radioactivity was translocated to the vegetative plant parts. This sink to source translocation was largely unaffected by destroying a band of phloem with steam treatment on the stem above and below the labeled pod. The same steam treatment, however, completely abolished translocation of [14C]sucrose between mature leaves and developing fruits. These results indicate that the movement of nutrients from developing seed coats to the vegetative plant parts occur in the xylem and that phloem loading does not occur in this sink tissue.  相似文献   

9.
K14CN is efficiently converted to asparagine in corn roots with asparagine accounting for 26% of the total radioactivity after 2 hr. Additions of glucose, cysteine or serine do not affect the reaction. Cysteine-14C(U) is normally a poor precursor of asparagine, but in the presence of 10−6 M KCN becomes a significant source. Cyanide does not promote the incorporation of serine-14C(U) or acetate-2-14C into asparagine. The antibiotic cycloheximide is a potent inhibitor of asparagine formation in the root tips when acetate-2-14C or aspartate-14C(U) serve as precursors. However, when K14CN is the precursor it is without effect. The results, therefore, show that cyanide is a potential asparagine precursor in maize root tips and suggest that normally the availability of cyanide and the synthesis of cysteine from serine are major rate limiting reactions in this pathway.  相似文献   

10.
Direct association between wheat roots and an ammonia-excreting mutant of the cyanobacterium Anabaena variabilis, strain SA-1, was required for maximal enhancement of growth of wheat plants in nitrogen (N)-free, hydroponic medium. Over 85% of the cyanobacterial mutant SA-1 inoculated to the roots were adsorbed under non-saturating conditions. The adsorption process of SA-1 to wheat roots was biphasic: an initial rapid adsorption was followed by a slow phase with about 10% of the initial adsorption rate. The maximal adsorption rate of filaments observed was 1.6 mg dry wt. SA-1 adsorbed·plant–1·h–1. Bypassing CO2 fixation and sugar formation, the 14C label from [14C]sucrose was directly applied to leaf blades to study sugar translocation. The 14C label from this treatment appeared in the wheat culture medium within an hour. Nitrate-grown plants excreted about 30% of the 14C label into the medium, compared to only 10% excreted by wheat/Anabaena co-cultures. SA-1 assimilated 27% of all 14C translocated from [U-14C]sucrose applied to wheat leaves, and 14C label from this treatment was recovered from strain SA-1 after 30 min. Roots and cyanobacteria accounted for 51% of all radioactive label recovered in the plants co-cultured with SA-1 vs 20% for nitrate-grown plants. We studied the activity of -fructosidase (invertase) in wheat of variety Yecora rojo. Roots from nitrate-grown wheat plants produced high levels of invertase activity, which converted over 85% of 3 mm sucrose into glucose and fructose in 24 h. The rate of sucrose disappearance in the medium of co-cultures using A. variabilis SA-1, was 70% of that of nitrate-grown plants, but the levels of glucose and fructose in these cultures were always very low during sucrose conversion, suggesting hexose assimilation. To study the role of diffusible metabolites, a dialysis membrane was employed to separate the ammonia-excreting SA-1 from the wheat roots. Containing SA-1 in a dialysis bag away from direct root contact, severely limited leaf growth to less than one-third of the growth rate of nitrate control cultures. Ammonia produced by mutant SA-1 in dialysis bag cultures was excreted into the medium at 0.4 mm vs 1.2 mm in free-living cultures, but ammonia was not detectable in co-cultures with or without the dialysis bag containing the mutant. The nitrogenase activity derepressed in the mutant and responsible for ammonia excretion was always higher in the association co-cultures than in either free cells or in dialysis-bag cultures. The nitrogenase activity of strain SA-1 was highest (200 mol ethylene formed·mg–1 Chl·h–1) when the cyanobacterium was associated with the root tips. Dialysis membrane separation of plant and cyanobacterium severely inhibited growth of wheat during a complete growth cycle of 2 months. Total biomass and grain yield were very similar for control cultures without inorganic N or SA-1, and for diffusion cultures containing SA-1, kept in a dialysis bag around the roots. Total biomass of the association co-culture attained 75% of the biomass of the nitrate-grown control. It is proposed that wheat roots supplied fructose derived from sucrose for growth and nitrogen fixation of SA-1 in the light, and that ammonia excreted by SA-1 was utilized by the wheat plant for its own growth. Correspondence to: H. Spiller  相似文献   

11.
In vivo and in vitro studies on asparagine biosynthesis in soybean seedlings   总被引:15,自引:0,他引:15  
The biosynthesis of asparagine in plants was investigated by feeding radioactive metabolites to soybean cotyledons and by extracting an asparagine synthetase from the same tissue. Soybean cotyledon slices were supplied with radioactive succinate, malate, or aspartate in the presence or absence of various unlabeled metabolites for periods of up to 80 min. Neither aspartate nor malate was rapidly converted to asparagine; labeled aspartate was converted largely to malate. Labeled succinate was rapidly converted to asparagine, and several lines of evidence suggested that fumarate, malate, and aspartate are intermediates. The results suggest that asparagine biosynthesis in plant cells is compartmentalized beginning with succinate. Although results were also consistent with asparagine formation via aspartate, metabolism of a mixture of [14C] plus [3H]succinate resulted in a lower 14C3H ratio in asparagine than aspartate, suggesting that some asparagine may be formed via another pathway. Demonstration of a glutamine-linked asparagine synthetase in soybean cotyledons supports the idea that asparagine is formed via aspartate. The enzyme requires aspartate (Km = 2.2 mm), glutamine (Km = 0.12 mm), ATP (Km = 0.066 mm), magnesium ion, and sulfhydryl protection. It has a pH optimum of 7.7 and is not located in mitochrondria. A small amount of asparagine was formed when ammonium ion was substituted for glutamine, but the Km of the enzyme for ammonium ion was about 25-fold greater than the Km for glutamine suggesting that glutamine is the physiologically important substrate. Soybean cotyledons actively convert [14C]-cyanide to asparagine, apparently via β-cyanoalanine. However, malate was also rapidly labeled from [14C]cyanide and this result cannot be explained by known metabolic pathways.  相似文献   

12.
Field experiments were undertaken to study the pattern of distribution of photosynthate produced by the leaves and the pods of Phaseolus vulgaris (cv. Purley King) by means of the 14C technique. It was found that the UC photosynthate produced by a trifoliate leaf (38 days after anthesis) was shared almost equally between the leaf and the pod at its axil with 33–50% of the fixed 14C finding its way to the seeds in that pod. However, during the early stages of pod development (10 days after anthesis) some 13–14% of the fixed 14C was detected in the stem, indicating the inadequacy of the pod as a sink at that stage. When the pod was treated, virtually no 14C was detected in other parts of the plant. Of the 14C fixed by pod photosynthesis in the later stages (38 days after anthesis), 55–60% was translocated to the seeds within the same pod. These results indicate the importance of current photosynthesis during the pod fill stage in P. vulgaris as has been suggested in other grain legume crops.  相似文献   

13.
The normal supply of growth substances to a young soybean plant was altered by removing the plant's apical meristem and replacing this meristem with an aqueous solution of either indole-3-acetic acid (IAA), gibberellic acid (GA), or water. The length of each experiment was 1 hr. In the middle of it, 14CO2 was administered to one of the primary leaves of the plant, and at the end distribution of 14C in various parts of the plant was determined. It was found that an addition of growth substances stimulated translocation in three different ways. Both IAA and GA increased the total amounts of sucrose-14C translocated, increased the rate of its translocation, and affected the distribution pattern of translocated sucrose throughout the plant. Experiments using IAA-14C have shown that the action of IAA is on the longitudinal translocation in the stem and not on the transfer of photosynthate from the mesophyll to the conducting tissues of the leaf.  相似文献   

14.
On feeding 14CO2 to the shoots of lupine (25 mCi per plant) 30 min was the minimal time needed to determine the incorporation of label into bacteroid compounds. The predominant incorporation, exhibited in all root, nodule and bacteroid samples after 30 min exposure, was into sucrose (45–90% of the corresponding fraction radioactivity) of the neutral fraction; into malate (30–40%) of the acid fraction; into aspartic acid and asparagine (60–80% in sum) of the basic fraction. The composition of carbon compounds containing the greatest amount of 14C in the cytosol of nodules and in bacteroids was similar. Their radioactivity after 30 min exposure was for bacteroids (nCi per g of bacteroid fr. wt): sucrose 5.73, glucose 1.00, malate 0.15, succinate 0.11; for the nodule cytosol (nCi per g of nodule fr. wt): sucrose 200.00, glucose 8.40, malate 9.34, succinate 8.50. Thus it was demonstrated that in lupine, sucrose is the main photoassimilate entering not only into nodules but also into bacteroids. The biosynthesis of aspartic acid and asparagine occurs during nitrogen fixation in bacteroids.  相似文献   

15.
Thorne JH 《Plant physiology》1982,70(4):953-958
Immature soybean embryos were isolated from soybean [Glycine max (L.) Merr.] seeds at various stages of development to study their accumulation of [14C]sucrose in vitro. Isolated embryos accumulate sucrose at a constant rate over several hours, the label entering large, endogenous pools of sucrose from which starch, protein, and lipid storage products are formed. Accumulation is without extracellular sucrose hydrolysis and occurs predominantly by active transport at physiological sucrose concentrations. A nonsaturable diffusion component, apparently superimposed upon the active saturable component, dominates overall uptake at exogenous concentrations greater than approximately 50 millimolar sucrose. Active transport is sensitive to uncoupling agents and the sulfhydryl-modifying reagent p-chloromecuribenzene sulfonate, is dependent on more than one energy source, and exhibits well-defined requirements for incubation temperature, pH, and oxygen availability. Under optimal incubation conditions of 35°C, saturating illumination (pH 6), and 21% oxygen, the apparent Km for sucrose is approximately 8 millimolar and Vmax is approximately 0.6 micromoles per hour per 100 milligrams fresh weight. Embryos readily accumulate sucrose from dilute exogenous solutions and, when preloaded with large amounts of sucrose, maintain the internal sucrose pool against steep outward gradients. These and other observations indicate that, although perhaps fully saturated in vivo, active sucrose transport is a significant component of photosynthate uptake in developing soybean embryos, enhancing uptake at physiological sucrose concentrations 2- to 5-fold over diffusion alone.  相似文献   

16.
The kinetic behavior of translocation profiles indicates that their shape is determined largely by the rate at which tracer enters the sieve tubes in the source leaf. Confirmation of this relationship was sought by investigating the kinetics of 14C in the immediate source pool for translocated sucrose in soybean (Glycine max L., cv. Bragg) and morning glory (Ipomea nil Roth, cv. Scarlet O'Hara) leaves. Quantitative microautoradiography was used to follow the water-soluble 14C contents of the companion cells in minor veins after pulse-labeling with 14CO2. In both morning glory and soybean, the observed kinetics in the companion cells matched reasonably well those expected from the shape of the translocation profiles.

Marked compartmentation of sucrose was evident in soybean leaves in that the specific radioactivity of total leaf sucrose was greatest immediately after labeling and quickly declined, whereas labeling in the companion cells was low at first and did not reach a maximum for about 35 minutes. In morning glory leaves, the kinetics of sucrose specific radioactivity and of companion cell-labeling more closely paralleled one another.

  相似文献   

17.
Freeze-substitution and Epon embedment were quantitatively evaluated for their effectiveness in retaining water-soluble metabolites in plant tissues. Roughly 99% of the 80% (v/v) ethanol-extractable radioactivity in photosynthetically labeled soybean leaf discs and in petiole fragments containing translocated 14C was retained during freeze-substitution in acetone or propylene oxide and embedment in Epon. Substantially more activity was lost from 14C-sucrose-infiltrated pith blocks, but most or all of this loss came from the block surface. The procedure was effective for a sucrose concentration as low as 0.004%. Sections floated on water retained most of their 14C-sucrose, and high resolution autoradiographs could easily be prepared without resorting to dry procedures. Embedded 14C-sucrose was apparently chemically unreactive, since there was no loss of radioactivity when sections were stained with the periodic acid-Schiff reagent, nor did the embedded sucrose show staining.  相似文献   

18.
The permeability of the Chlorella pyrenoidosa membrane was studied by following the efflux of 14C-intracellular material from cells which had been allowed to incorporate 14CO2 photosynthetically. It was observed that the efflux increased upon treatment with low concentrations (3-30 μM) of 2, 3-dichloro-1, 4-naphthoquinone (dichlone), 2-amino-3-chloro-1, 4-naphthoquinone (06K-quinone), and 2, 3, 5, 6-tetrachloro-1, 4-benzoquinone (chloranil). Dichlone caused a greater loss of intracellular material than chloranil or 06K-quinone. The rate of loss as well as the total loss of 14C increased with an increase in the concentration of the quinones. In the dichlone-treated cells, the leakage was observed within 1 minute of the addition of the chemical and the effect on cell permeability was irreversible. Cells exposed to dichlone in the light or under anaerobic conditions released significantly greater amounts of 14C-material than cells treated in the dark or under aerobic conditions. The aqueous ethanol-soluble fraction of the cell was found to be the source of the released material. The proportion of the ethanol-soluble 14C that leaked out of the cell varied with the time of 14C-assimilation prior to treatment with dichlone. In the dichlone-treated cells, practically all the 14C-sucrose, alanine, glutamine, serine, and glycine leaked out, whereas glutamic, aspartic, succinic, and fumaric acids were lost only partially. Essentially no 14C-lipids were lost from the cells during dichlone treatment.  相似文献   

19.
Nectar was collected from the extrafloral nectaries of leaf stipels and inflorescence stalks, and phloem sap from cryopunctured fruits of cowpea plants. Daily sugar losses as nectar were equivalent to only 0.1–2% of the plant's current net photosynthate, and were maximal in the fourth week after anthesis. Sucrose:glucose:fructose weight ratios of nectar varied from 1.5:1:1 to 0.5:1:1, whereas over 95% of phloem-sap sugar was sucrose. [14C]Sucrose fed to leaves was translocated as such to nectaries, where it was partly inverted to [14C]glucose and [14C]fructose prior to or during nectar secretion. Invertase (EC 3.2.1.26) activity was demonstrated for inflorescence-stalk nectar but not stipel nectar. The nectar invertase was largely associated with secretory cells that are extruded into the nectar during nectary functioning, and was active only after osmotic disruption of these cells upon dilution of the nectar. The nectar invertase functioned optimally (phloem-sap sucrose as substrate) at pH 5.5, with a starting sucrose concentration of 15% (w/v). Stipel nectar was much lower in amino compounds relative to sugars (0.08–0.17 mg g-1 total sugar) than inflorescence nectar (22–30 mg g-1) or phloem sap (81–162 mg g-1). The two classes of nectar and phloem sap also differed noticeably in their complements of organic acids. Xylem feeding to leaves of a range of 14C-labelled nitrogenous solutes resulted in these substrates and their metabolic products appearing in fruit-phloem sap and adjacent inflorescence-stalk nectar. 14C-labelled asparagine, valine and histidine transferred freely into phloem and appeared still largely as such in nectar. 14C-labelled glycine, serine, arginine and aspartic acid showed limited direct access to phloem and nectar, although labelled metabolic products were transferred and secreted. The ureide allantoin was present in phloem, but absent from both types of nectar. Models of nectary functioning are proposed.  相似文献   

20.
Solutions of nitrates (0.5% KNO3, 0.2% NH4NO3) or urea (0.15%) were fed under the pressure of 104 Pa to 50–60-cm-long detached shoots of common flax (Linum usitatissimum L.). One hour after the start of supplying the solutions, an assimilation clip chamber was fastened to the middle part of the shoot (14C source area), and 14CO2 was blown through in the light for 2.5 min. The analysis of distribution of 14C among the labeled products of photosynthesis produced by source leaves showed that nitrates reduced the incorporation of the label into sucrose. At the same time, the ratio of labeled sucrose to labeled hexoses decreased, and the incorporation of the label into serine greatly increased. Urea did not produce such effects. The pattern of distribution of 14C within the plant 3 h after the assimilation of 14CO2 points to the suppression of assimilate efflux from the leaves of plants fed with nitrates. In plants supplied with water or urea, 17–20% of labeled carbon was found below the 14C source area of the shoot, in nitrate type of treatment, only 3–5% was found there. In plants supplied with nitrates, the cortex tissue below the source leaf contained more 14C in proteins and less in low-molecular substances. In the wood tissue, such a correlation was not observed. When the shoot was supplied with water or urea, the content of 14C in sucrose in the source leaves in 3 h declined from 55–60% to 38–42%. When the shoot was fed with nitrates, the share of label in sucrose increased from 50 to 62–73%. Autoradiography of the source leaves showed that, in plants supplied with water or urea, the label was predominantly accumulated in large vascular bundles, and in nitrate type of treatment, it was accumulated outside large bundles. Electron microscopy showed that, in nitrate plants, the companion cells of phloem endings were very much vacuolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号