首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在位于中国北部半干旱区的多伦县选择 3种不同生活型的植物 ,每种生活型各选取 3种有代表性的植物 :3种落叶乔木白桦 Betula platyphylla 、山定子 Malus baccata 、山杏 Prunus armeniaca ,3种落叶灌木黄柳 Sal-ix flavida 、山刺玫 Rosa davurica 、羊柴 H edysarum laeve 和 3种多年生草本地榆 Sanguisorba officinalis 、菊叶委陵菜 Potentilla tanacetifolia 、叉分蓼 Polygonum divaricatum ,对它们的氮素回收特征进行了研究 .结果表明 :乔木、灌木及草本 3种不同生活型植物的氮素回收效率分别为 4 3.4 2 %、5 8.84 %、73.76 % ,氮素回收水平分别为 12 .4 m g· g- 1、10 .7mg· g- 1和 8.2 m g· g- 1 .两种深根系生活型植物 乔木、灌木 的枯叶具有较高的氮素浓度 即回收水平低 ,并且成熟绿叶与枯叶中的氮素浓度差异较小 即回收效率低 ,与之相比 ,浅根系的多年生草本植物的枯叶具有较低的氮素浓度 即回收水平高 ,并且成熟绿叶与枯叶中的氮素浓度差异较大 即回收效率高 .不同生活型植物氮素回收能力的差异说明了不同生活型植物对生境具有不同的氮素适应策略 ,另一方面 ,氮素回收效率和氮素回收水平可作为衡量植物氮素回收能力的两个重要参数 .  相似文献   

2.
中国土壤和植物养分管理现状与改进策略   总被引:99,自引:0,他引:99  
针对当前我国农业生产面临增肥不增产、土壤养分过量累积、化肥施用过量和养分利用效率下降等重大问题,本文综述了中国土壤养分与植物营养状况的历史演变和研究进展,提出中国植物营养科学研究应在跟踪国际科学前沿的同时,紧密结合中国农业生产实际,通过大幅度提高养分效率和作物产量为农业可持续发展做出应有的贡献。  相似文献   

3.
中亚热带不同森林更新方式生态酶化学计量特征   总被引:4,自引:2,他引:4  
了解土壤生态化学计量特征对预测不同生态系统养分变化、功能以及植物生产力具有重要意义。森林更新是维持中亚热带森林生态系统可持续发展的重要手段。选取福建省三明市陈大林业采育场3种不同森林更新方式进行研究,包括米槠次生林(SF)、米槠人工促进天然更新林(AR)和杉木人工林(CF),测定其土壤理化性质及土壤3种酶,计算酶化学计量。结果显示:1)AR的土壤总氮、全磷、铵态氮含量以及含水量最高(P < 0.05),土壤有效磷的含量则是CF最高(P < 0.05);2)生态酶化学计量结果表明AR的土壤微生物处于氮限制状态,CF的土壤微生物处于磷限制状态;3)冗余分析表明,土壤含水量和铵态氮是驱动不同森林更新方式土壤生态酶化学计量变异的重要环境因子。研究表明,人促更新方式更有利于土壤有效氮的积累,而人工林则有利于土壤有效磷积累,这可能与造林树种有关。土壤生态酶化学计量更易受到土壤含水量以及有效性养分的驱动,而与土壤化学计量未呈现良好的耦合性。  相似文献   

4.
文冠果叶片养分元素含量的动态变化及再吸收特性   总被引:6,自引:1,他引:6  
阴黎明  王力华  刘波 《植物研究》2009,29(6):685-691
以文冠果叶片为试材,运用原子吸收光谱法分析了叶片养分元素含量的季节动态变化和再吸收效率。结果表明:N、P、K均呈下降趋势,是“稀释效应”和养分再吸收导致;Mg呈“单峰”曲线走势,与Mg的生理功能有关;Fe、Mn呈“V”字型走势,Cu呈“W”型,Zn呈“N”型,与树体吸收特性和不同的物候期有关。总体来看,养分元素含量顺序是:N>P>K>Mg>Fe>Zn>Mn>Cu,且不同时期又有所不同。大量元素之间存在显著的相关关系;微量元素间相关关系不显著(Fe、Zn除外),Fe与N显著负相关,与拮抗作用有关。C/N呈升高趋势,差异显著;N/P呈降低趋势,差别不大。养分再吸收效率由大到小的顺序是:Mg>N>K>P,差异显著。微量元素由于移动性较差,不能被再吸收。N、P、K、Mg养分再吸收效率反映了文冠果较高的养分保存能力和养分利用效率。  相似文献   

5.
中国东部沿海杨树人工林养分重吸收和化学计量对氮添加的响应 叶片养分重吸收对土壤养分的变化很敏感。然而,我们尚不清楚氮沉降如何影响植物大量元素重吸收率。杨树(Populus deltoids)是世界上栽培最广泛的阔叶树种之一。本文研究了在氮添加条件下,杨树重吸收率及其化学计量比的规律和主要驱动因素。通过一个4年的氮添加实验,我们探究中国东部沿海两个林分(8和12年)杨树人工林重吸收率及其化学计量比对氮添加的响应。我们测定了在一系列氮添加浓度水平(0、50、100、150、300 kg N ha−1 yr−1)下,土壤和叶片(包括绿叶和落叶)中氮、磷、钾、钙、镁的浓度。研究结果表明,除钙元素重吸收率和钙、镁元素重吸收率化学计量比外,氮添加对两个林分大量元素重吸收率及其化学计量比都没有显著影响。氮、磷重吸收率尺度斜率在不同氮添加水平下均小于1,表明氮添加条件下,氮、磷元素重吸收率解耦。养分重吸收率与绿叶中养分含量显著正相关,表明重吸收主要受到绿叶养分调控。我们的研究结果为中国东部沿海地区12年生杨树人工林的生长受氮限制提供了直接证据。  相似文献   

6.
Aims To explore resorption efficiency of nitrogen (NRE) and phosphorus (PRE) of woody plants in relation to soil nutrient availability, climate and evolutionary history, in North China.Methods We measured concentrations of nitrogen ([N]) and phosphorus ([P]) in both full expanded mature green and senescent leaves of the same individuals for 88 woody species from 10 sites of Mt. Dongling, Beijing, China. We built a phylogenetic tree for all these species and compared NRE and PRE among life forms (trees, shrubs and woody lianas) and between functional groups (N-fixers and non-N-fixers). We then explored patterns of NRE and PRE along gradients of mean annual temperature (MAT), soil inorganic N and available P, and phylogeny using a general linear model.Important findings Mass-based NRE (NRE m) and PRE (PRE m) averaged 57.4 and 61.4%, respectively, with no significant difference among life forms or functional groups. Neither NRE m nor PRE m exhibited significant phylogenetic signals, indicating that NRE m and PRE m were not phylogenetically conserved. NRE m was not related to [N] in green leaves; PRE m was positively correlated with [P] in green leaves; however, this relationship disappeared for different groups. NRE m decreased with [N] in senescent leaves, PRE m decreased with [P] in senescent leaves, for all species combined and for trees and shrubs. NRE m decreased with soil inorganic N for all species and for shrubs; PRE m did not exhibit a significant trend with soil available P for all species or for different plant groups. Neither NRE m nor PRE m was significantly related to MAT for overall species and for species of different groups.  相似文献   

7.
Understanding variation of plant nutrients is largely limited to nitrogen and to a lesser extent phosphorus. Here we analyse patterns of variation in 11 elements (nitrogen/phosphorus/potassium/calcium/magnesium/sulphur/silicon/iron/sodium/manganese/aluminium) in leaves of 1900 plant species across China. The concentrations of these elements show significant latitudinal and longitudinal trends, driven by significant influences of climate, soil and plant functional type. Precipitation explains more variation than temperature for all elements except phosphorus and aluminium, and the 11 elements differentiate in relation to climate, soil and functional type. Variability (assessed as the coefficient of variation) and environmental sensitivity (slope of responses to environmental gradients) are lowest for elements that are required in the highest concentrations, most abundant and most often limiting in nature (the Stability of Limiting Elements Hypothesis). Our findings can help initiate a more holistic approach to ecological plant nutrition and lay the groundwork for the eventual development of multiple element biogeochemical models.  相似文献   

8.
9.
Foliar phosphorus (P) and nitrogen (N) concentrations and nutrient resorption in the forest understory shrub Lonicera maackii (Rupr.) Maxim (Caprifoliaceae) were measured along contiguous topographic gradients in two southwestern Ohio forests during 1992–1994. Mean summer foliar P varied significantly among topographic positions (but not sites or years), with uplands having greatest P concentrations and bottomlands exhibiting the lowest. Unlike for P, the mean summer foliar N concentrations varied little among sites, topographic positions, and years. Mean absolute and proportional P resorption ranged from 0.48 mg/dm2 (33.7%) in slope positions to 0.80 mg/dm2 (53.1%) in bottomland positions. Repeated-measures analysis of variance (RMANOVA) for P resorption indicated significant topographic and year effects, a site × year and a site × year × topographic interaction. Mean absolute and proportional foliar N resorption ranged from 6.82 mg/dm2 (30.7%) in bottomlands to 8.41 mg/dm2 (37.3%) in slope positions. RMANOVA indicated a significant topographic effect for both absolute and proportional N resorption and a significant year effect for absolute N resorption. These significant year effects for P and N stemmed from lowest resorption of nutrients in 1993. The results for P resorption support the hypothesis that foliar resorption is greater in forested sites with lower P fertility. However, resorption rates for N did not support the hypothesis clearly, as slopes with intermediate N availability had greater N resorption rates than did N-rich bottomlands.  相似文献   

10.
丛枝菌根真菌在外来植物入侵演替中的作用与机制   总被引:1,自引:0,他引:1  
外来植物入侵不仅是环境、经济和社会问题,也是一个生理学和生态学问题,尤其是入侵植物与本地植物、入侵植物和本地土壤生物之间的相互作用决定外来植物入侵程度。丛枝菌根真菌(AMF)作为土壤中一类极为重要的功能生物,在外来植物入侵演替过程中发挥多种不同作用。文章系统总结了AMF对入侵植物个体和群体的影响,入侵植物与本地植物竞争中AMF发挥的促进和抑制作用;探讨了AMF与入侵植物的相互作用关系,以及环境因子对AMF一入侵植物关系的影响:对AMF在外来植物入侵演替中的作用机制进行了讨论。旨在为探索控制生物入侵的新途径、为我国开展外来植物入侵研究与防控实践提供新思路。  相似文献   

11.
12.
为揭示丘陵沟壑区刺槐的养分重吸收特征及其驱动因素,研究该区不同林龄刺槐叶片全氮和全磷的浓度,以及土壤有机碳、全氮、全磷、铵态氮、硝态氮和速效磷浓度及其化学计量,分析了叶片氮磷重吸收效率与土壤养分特性之间的关系。结果表明: 植物和土壤的养分随林龄增长发生显著变化,而土壤总磷和速效磷浓度较低。氮重吸收效率随林分生长先增加后降低,范围为48.2%~54.0%,平均为48.5%;磷重吸收效率则显著增加,范围为45.2%~49.4%,平均为46.9%。氮重吸收效率与土壤氮素和氮磷比呈负向响应,而磷重吸收效率与氮磷比呈显著正相关,与土壤速效磷呈负相关。表明土壤养分有效性的变化负向驱动养分重吸收效率。由于该生境中刺槐林的固氮效应及磷限制,叶片养分重吸收策略对土壤氮磷比响应强烈。  相似文献   

13.

Background and Aims

Elucidating the stoichiometry and resorption patterns of multiple nutrients is an essential requirement for a holistic understanding of plant nutrition and biogeochemical cycling. However, most studies have focused on nitrogen (N) and phosphorus (P), and largely ignored other nutrients. The current study aimed to determine relationships between resorption patterns and leaf nutrient status for 13 nutrient elements in a karst vegetation region.

Methods

Plant and soil samples were collected from four vegetation types in the karst region of south-western China and divided into eight plant functional types. Samples of newly expanded and recently senesced leaves were analysed to determine concentrations of boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), N, sodium (Na), P, sulphur (S) and zinc (Zn).

Key Results

Nutrient concentrations of the karst plants were lower than those normally found in other regions of China and the rest of the world, and plant growth was mainly limited by P. Overall, four nutrients revealed resorption [N (resorption efficiency 34·6 %), P (48·4 %), K (63·2 %) and Mg (13·2 %)], seven nutrients [B (–16·1 %), Ca (–44·0 %), Cu (–14·5 %), Fe (–205·5 %), Mn (–72·5 %), Mo (–35·6 %) and Zn (–184·3 %)] showed accumulation in senesced leaves and two nutrients (Na and S) showed no resorption or accumulation. Resorption efficiencies of K and Mg and accumulation of B, Ca, Fe and Mn differed among plant functional types, and this strongly affected litter quality. Resorption efficiencies of N, P and K and accumulation of Ca and Zn increased with decreasing concentrations of these nutrients in green leaves. The N:P, N:K and N:Mg ratios in green leaves predicted resorption proficiency for N, K and Mg, respectively.

Conclusions

The results emphasize the fact that nutrient resorption patterns strongly depend on element and plant functional type, which provides new insights into plant nutrient use strategies and nutrient cycling in karst ecosystems.  相似文献   

14.
植物叶片氮(N)、磷(P)养分特征受土壤可利用性N、P含量和N、P相对比例(N:P)的共同影响, 研究其作用机制有助于解释和评估土壤养分变化对植物养分利用策略的影响。该研究通过盆栽实验, 探讨芨芨草(Achnatherum splendens)养分化学计量学特征和叶片养分回收特征对不同剂量的养分添加(低、中、高3个N添加水平: 1.5、4.5、13.5 g·m-2·a-1)及不同土壤N:P (5、15、25)的响应。结果表明: 养分添加水平的提高显著增加了成熟叶片P含量和衰老叶片N、P含量, 显著降低了叶片N、P养分回收效率(NRE, PRE)。土壤N:P的升高显著降低了衰老叶片P含量和叶片NRE, 但增加了成熟和衰老叶片N:P和叶片PRE。相同养分添加水平条件下, 土壤N:P与叶片PRE显著正相关, 但与叶片NRE无显著相关性; 相同N:P条件下, 养分添加水平与NRE负相关, 但与PRE无显著相关性。植物NRE:PRE可以有效地反映环境变化所导致的植物对N、P需求的改变。土壤养分添加水平和N:P共同影响着芨芨草的叶片养分生态化学计量学特征和养分回收。  相似文献   

15.
The native tree Metrosideros polymorpha dominates Hawaiian forests across a very wide range of soil fertility, including both sites where forest production is limited by nitrogen (N) and others where it is limited by phosphorus (P). Five long-term fertilization experiments have further broadened the range of nutrient availabilities experienced by Metrosideros. Adding P to P-limited sites increased foliar P concentrations threefold and litter P concentrations up to 10-fold; lignin concentrations decreased, and the decomposability of leaf litter increased from 32%–35% to 36%–46% mass loss in the first year. Adding N to N-limited sites increased leaf and litter N concentrations by only 15%–20%, with little or no effect on the decomposability of tissue. Received 22 January 1998; accepted 4 May 1998.  相似文献   

16.
To understand the importance of plants in structuring the vertical distributions of soil nutrients, we explored nutrient distributions in the top meter of soil for more than 10,000 profiles across a range of ecological conditions. Hypothesizing that vertical nutrient distributions are dominated by plant cycling relative to leaching, weathering dissolution, and atmospheric deposition, we examined three predictions: (1) that the nutrients that are most limiting for plants would have the shallowest average distributions across ecosystems, (2) that the vertical distribution of a limiting nutrient would be shallower as the nutrient became more scarce, and (3) that along a gradient of soil types with increasing weathering-leaching intensity, limiting nutrients would be relatively more abundant due to preferential cycling by plants. Globally, the ranking of vertical distributions among nutrients was shallowest to deepest in the following order: P > K > Ca > Mg > Na = Cl = SO4. Nutrients strongly cycled by plants, such as P and K, were more concentrated in the topsoil (upper 20 cm) than were nutrients usually less limiting for plants such as Na and Cl. The topsoil concentrations of all nutrients except Na were higher in the soil profiles where the elements were more scarce. Along a gradient of weathering-leaching intensity (Aridisols to Mollisols to Ultisols), total base saturation decreased but the relative contribution of exchangeable K+ to base saturation increased. These patterns are difficult to explain without considering the upward transport of nutrients by plant uptake and cycling. Shallower distributions for P and K, together with negative associations between abundance and topsoil accumulation, support the idea that plant cycling exerts a dominant control on the vertical distribution of the most limiting elements for plants (those required in high amounts in relation to soil supply). Plant characteristics like tissue stoichiometry, biomass cycling rates, above- and belowground allocation, root distributions, and maximum rooting depth may all play an important role in shaping nutrient profiles. Such vertical patterns yield insight into the patterns and processes of nutrient cycling through time.  相似文献   

17.
Aims (i) To explore variations in nutrient resorption of woody plants and their relationship with nutrient limitation and (ii) to identify the factors that control these variations in forests of eastern China.Methods We measured nitrogen (N) and phosphorus (P) concentrations in both green and senesced leaves of 172 woody species at 10 forest sites across eastern China. We compared the nutrient resorption proficiency (NuRP) and efficiency (NuRE) of N and P in plant leaves for different functional groups; we further investigated the latitudinal and altitudinal variations in NuRP and NuRE and the impacts of climate, soil and plant types on leaf nutrient resorptions.Important findings On average, the leaf N resorption proficiency (NRP) and P resorption proficiency (PRP) of woody plants in eastern China were 11.1mg g ? 1 and 0.65 mg g ? 1, respectively; and the corresponding N resorption efficiency (NRE) and P resorption efficiency (PRE) were 49.1% and 51.0%, respectively. Angiosperms have higher NRP (are less proficient) values and lower NRE and PRE values than gymnosperms, but there are no significant differences in NRP, PRP and PRE values between species with different leaf habits (evergreen vs. deciduous angiosperms). Trees have higher NRE and PRE than shrubs. Significant geographical patterns of plant nutrient resorption exist in forests of eastern China. In general, NRP and PRE decrease and PRP and NRE increase with increasing latitude/altitude for all woody species and for the different plant groups. Plant functional groups show more controls than environmental factors (climate and soil) on the N resorption traits (NRP and NRE), while site-related variables present more controls than plant types on PRP and PRE. NRP increases and PRP and NRE decrease significantly with increasing temperature and precipitation for the overall plants and for most groups, except that significant PRE–climate relationship holds for only evergreen angiosperms. Leaf nutrient resorption did not show consistent responses in relation to soil total N and P stoichiometry, probably because the resorption process is regulated by the relative costs of drawing nutrients from soil versus from senescing leaves. These results support our hypothesis that plants growing in P-limited habitats (low latitudes/altitudes or areas with high precipitation/temperature) should have lower PRP and higher PRE, compared with their counterparts in relatively N-limited places (high latitudes/altitudes or areas with low precipitation/temperature). Our findings can improve the understanding of variations in N and P resorption and their responses to global change, and thus facilitate to incorporate these nutrient resorption processes into future biogeochemical models.  相似文献   

18.
阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征   总被引:27,自引:0,他引:27  
荒漠植物在水分限制、营养元素相对匮缺的条件下,经过长期的进化适应形成了自身独特的生理生态和生态化学计量特征。在阿拉善荒漠选择52个典型群落类型,分析和研究了54种荒漠植物叶片的碳、氮和磷的化学计量特征。结果表明:荒漠植物叶片的碳(C mg/g)、氮(N mg/g)和磷(P mg/g)含量变幅较大,分别为(379.01±55.42)mg/g、(10.65±7.91)mg/g和(1.04±0.81)mg/g,变异系数分别为0.15、0.74和0.78;C/N、C/P、和N/P分别为66.70±60.81、683.16±561.94、11.53±5.06。元素间相关性分析表明,叶片的C和N不相关(P0.05),C与P显著正相关(P0.05),N和P极显著正相关(P0.01)。从植物功能型的角度分析发现,灌木和1年生草本植物对C的存储能力较低;占整体67%的灌木叶片的N、P含量最低,导致总体N、P含量较低;多年生草本和1年生草本植物叶N含量与灌木植物叶片和整体N含量无差别,而P含量明显高于灌木植物叶片和整体P含量且N/P明显低于灌木植物叶片和总体N/P,导致总体N/P较低。该研究结果与全球和中国尺度的研究相比发现,荒漠植物叶片C、N、P含量和N/P明显偏低,N/P14说明阿拉善荒漠植物在受N、P共同作用的同时更易受N限制。  相似文献   

19.
以中国科学院巴音布鲁克草原生态系统研究站长期围栏内外的羊茅(Festuca ovina)、天山赖草(Leymus tiansecalinus)、二裂委陵菜(Potentilla bifurca)和鹅绒委陵菜(Potentilla anserine)4种植物叶片和土壤为研究对象,分析了放牧与围封对植物叶片和土壤C、N、P的化学计量特征的影响。结果表明,围封样地土壤养分浓度整体高于放牧样地(P<0.05),全氮(TN)浓度除外。围封显著增加羊茅叶片C、N浓度(P<0.05),对P浓度影响不显著;围封显著增加鹅绒委陵菜叶片的C浓度,但是显著降低叶片的N和P浓度(P<0.05),围封对天山赖草和二裂委陵菜养分含量影响不显著。围封显著增加鹅绒委陵菜C∶N和C∶P(P<0.05);围封显著降低羊茅C∶N、C∶P和增加N∶P(P<0.05);围封显著降低二裂委陵菜C∶N(P<0.05),对天山赖草的化学计量特征影响不显著。不同植物对围封的响应不同,意味着长期围封可能会改变天山高寒草原生态系统的结构。围封降低优势种(羊茅)的固碳能力,增加退化期出现的代表性植物(鹅绒...  相似文献   

20.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号