首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[10D-3H; 3-14C]- and [10L-3H; 3-14C]arachidonic acids were incubated with human polymorphonuclear leukocytes and with human platelets. Leukotriene B4 and 5(S),12(S)-dihydroxy-6trans,8cis,10trans,14-cis-eicosatetraenoic acid (5,12-DHETE) were isolated and the 3H/14C ratios determined. It could be concluded that the 10D (pro-R)-hydrogen is eliminated in the conversion of 5(S)-hydroperoxy-6trans,8cis,11cis,14cis-eicosatetraenoic acid into leukotriene A4 whereas in the conversion of arachidonic acid into 5,12-DHETE the 10L (pro-S)-hydrogen is lost. Incubation of the doubly labeled arachidonic acids with human platelets confirmed and extended previous data on the stereochemistry of the hydrogen removal from C-10 during the conversion into 12(S)-hydroperoxy-5cis,8cis,10trans,14cis-eicosatetraenoic acid, i.e., the 10L (pro-S)-hydrogen is eliminated and the 10D (pro-R)-hydrogen retained.  相似文献   

2.
β-Sitosterol-4-14C is metabolized to Δ4-β-sitosten-3-one by Cheiranthus cheiri leaf homogenates. Greater than 60% conversion occurs within 2 hr. Under identical conditions, leaf homogenates of Strophanthus kombé fail to metabolize β-sitosterol, while Digitalis purpurea leaf homogenates yield only very small amounts of the metabolite.  相似文献   

3.
The addition of gibberellic acid and some other gibberellins to cultures of Gibberella fujikuroi suppresses the incorporation of [2-14C]MVA and 14C-labelled ent-kaurene into the gibberellin metabolises.  相似文献   

4.
Biosynthesis of branched glucan by Pestalotiopsis from media containing D-(1-13C)glucose, D-(2-13C)glucose, D-(4-13C)glucose, D-(6-13C)glucose or a mixture of D-(1-13C)glucose and D-(2-13C)glucose was carried out to elucidate biosynthetic mechanism of branched polysaccharides. 13C NMR spectra of the labeled polysaccharides were determined and assigned. Analysis of 13C NMR spectra of glucitol acetates obtained from hydrolysates of the labeled branched polysaccharides indicated that transfer of labeling from C-1 to C-3 and C-6 carbons, from C-2 to C-1, C-3 and C-5 carbons, and from C-6 to C-1 carbon. From the results the percentages of routes via which the polysaccharide is biosynthesized are estimated. They show that the biosynthesis of the polysaccharide via the Embden-Meyerhof pathway and that from lipids and proteins are more active, and the pentose cycle is less active, than in the biosynthesis of cellulose and curdlan. As for the results, labeling at C-6 carbon in the branched polysaccharide cultured from D-(6-13C)glucose was low, compared to that of cellulose and curdlan.  相似文献   

5.
In order to better understand the function of aromatase, we carried out kinetic analyses to asses the ability of natural estrogens, estrone (E1), estradiol (E2), 16-OHE1, and estriol (E3), to inhibit aromatization. Human placental microsomes (50 μg protein) were incubated for 5 min at 37°C with [1β-3H]testosterone (1.24 × 103 dpm 3H/ng, 35–150 nM) or [1β-3H,4-14C]androstenedione (3.05 × 103 dpm 3H/ng, 3H/14C = 19.3, 7–65 nM) as substrate in the presence of NADPH, with and without natural estrogens as putative inhibitors. Aromatase activity was assessed by tritium released to water from the 1β-position of the substrates. Natural estrogens showed competitive product inhibition against androgen aromatization. The Ki of E1, E2, 16-OHE1, and E3 for testosterone aromatization was 1.5, 2.2, 95, and 162 μM, respectively, where the Km of aromatase was 61.8 ± 2.0 nM (n = 5) for testosterone. The Ki of E1, E2, 16-OHE1, and E3 for androstenedione aromatization was 10.6, 5.5, 252, and 1182 μM, respectively, where the Km of aromatase was 35.4 ± 4.1 nM (n = 4) for androstenedione. These results show that estrogens inhibit the process of andrigen aromatization and indicate that natural estrogens regulate their own synthesis by the product inhibition mechanism in vivo. Since natural estrogens bind to the active site of human placental aromatase P-450 complex as competitive inhibitors, natural estrogens might be further metabolized by aromatase. This suggests that human placental estrogen 2-hydroxylase activity is catalyzed by the active site of aromatase cytochrome P-450 and also agrees with the fact that the level of catecholestrogens in maternal plasma increases during pregnancy. The relative affinities and concentration of androgens and estrogens would control estrogen and catecholestrogen biosynthesis by aromatase.  相似文献   

6.
The diverse function of human placental aromatase including estradiol 6-hydroxylase and cocaine N-demethylase activity are described, and the mechanism for the simultaneous metabolism of estradiol to 2-hydroxy- and 6-hydroxyestradiol at the same active site of aromatase is postulated. Comparison of aromatase activity is also made among the wild type and N-terminal sequence deleted forms of human aromatase which are recombinantly expressed in Escherichia coli. Aromatase cytochrome P450 was reconstituted and incubated with [6,7-3H2,4-14C]estradiol, 7-ethoxycoumarin, and [N-methyl-3H3]cocaine. 6-Hydroxy[7-3H,4-14C]estradiol was isolated as the metabolite of estradiol and the 3H-water release method based on the 6-3H label was established. The initial rate kinetics of the 6-hydroxylation gave Km of 4.3 μM, Vmax of 4.02 nmol min−1mg−1, and turnover rate of 0.27 min−1. Testosterone competed dose-dependently with the 6-hydroxylation and showed the Ki of 0.15 μM, suggesting that they occupy the same binding site of aromatase. The deethylation of 7-ethoxycoumarin showed Km of 200 μM, Vmax of 12.5 nmol min−1mg−1 and turnover rate of 1.06 min−1. The N-demethylation of cocaine was analysed by the 3H-release method, giving Km of 670 μM, Vmax of 4.76 nmol min−1mg−1, and turnover rate of 0.49 min−1. All activity was dose-responsively suppressed by anti-aromatase P450 monoclonal antibody MAb3-2C2. The N-terminal 38 amino acid residue deleted form of aromatase P450 was expressed in particularly high yield giving a specific activity of 397 ± 83 pmol min−1mg−1 (n = 12) of crude membrane-bound particulates with a turnover rate of 2.6 min−1.  相似文献   

7.
Biosynthetic studies of the guaianolide-type sesquiterpene lactones 11βH,13-dihydrolactucin-8-O-acetate and 8-desoxylactucin were performed in Agrobacterium rhizogenes—transformed hairy root cultures of blue-flowered lettuce, Lactuca floridana. The 13C NMR spectra of the two guaianolides labelled by incorporation of [1-13C], [2-13C], [1,2-13C2]acetate and [2-13C]mevalolactone showed patterns of enrichment consistent with a previously proposed biogenetic pathway for guaianolide-type sesquiterpene lactones via the acetate-mevalonate-germacradiene route.  相似文献   

8.
The pentose phosphate pathway operates at an elevated level in rat kidney following induction of diabetes and in the compensatory hypertrophy following unilateral nephrectomy in control and alloxan-diabetic rats, as shown by the yields of 14Co2 from [1-14C]glucose, [6-14C]glucose and 3H2O yields from [2-3H]glucose. The elevated flux through the pentose phosphate pathway is correlated with the increased RNA content and weight of the kidney. The direct utilization of NADPH for reductive synthetic reactions and the potential for indirect utilization via the sorbitol route and the linked transhydrogenase reactions of the glucuronate-xylulose pathway, for NADH and ATP generation, are also discussed.  相似文献   

9.
Strains of car B (phytoene-accumulating) mutants of Phycomyces blakesleeanus have been characterized with respect to their carotene contents, in vitro formation of isoprenoids from [2-14C] mevalonic acid and their ability to produce [14C]phytoene in situ for use in coupled assays of phytoene desaturase activity. All strains produced predominantly (15-Z)-phytoene both in vivo and in vitro. Other isoprenoids were produced by cell extracts including squalene, sterols, prenyl diphosphates and prenyl alcohols. The addition of 1% Tween 60 to crude cell extracts of the mutants partially restored wild type carotenogenic activity and also altered the proportions of other isoprenoids formed. However, in a cytosolic fraction of the car B mutant, the addition of 1% Tween 60 did not result in the production of any carotenoid from phytoene. This fraction was the most effective source of [14C] phytoene for use in coupled assays of phytoene desaturase activity.  相似文献   

10.
A study has been made, using Calliphora stygia at the time of puparium formation, of the incorporation of a number of labelled sterols into β-ecdysone. [1-3H]-Cholesterol and [4-14C]-cholesterol are incorporated to a similar extent (0·01-0·02%). [1-3H]-7-Dehydrocholesterol is better incorporated (0·025%) than cholesterol while [1-3H]-cholesterol sulphate, (22R)-22-hydroxy-[22-3H]-cholesterol, and 25-hydroxy-[26-14C]-cholesterol are not incorporated to a significant extent.  相似文献   

11.
In order to elucidate the biosynthetic process of cellulose and curdlan, 13C-labeled polysaccharides were biosynthesized by Acetobacter xylinum (IFO 13693) and Agrobacterium sp. (ATCC 31749), from culture media containing -(1-13C)glucose, -(2-13C)glucose, -(4-13C)glucose, or -(6-13C)glucose as the carbon source, and their structures were determined by 13C NMR spectroscopy. The labeling was mainly found in the original position, indicating direct polymerization of introduced glucoses. In addition, the transfer of labeling from C-2 to C-1, C-3 and C-5, from C-4 to C-1, C-2 and C-3, and from C-6 to C-1 was found in celluloses. In curdlan, the transfer of labeling from C-1 to C-3, from C-2 to C-1 and C-3, from C-4 to C-1, C-2 and C-3, and from C-6 to C-1 and C-3 was observed. From analysis of this labeling, the biosynthetic process of cellulose and curdlan was explained as involving six routes. The percentages of each route via which cellulose or curdlan is biosynthesized were estimated for upper (C-1 to C-3) and lower portions (C-4 to C-6) of glucosidic units in the polysaccharides. It is noted that very few polysaccharides are formed via the Embden-Meyerhof pathway. The lower half (C-4 to C-6) structure of introduced glucoses is well preserved in the polysaccharides.  相似文献   

12.
The oxidation of [1-14C]linoleate in isolated microsomes from pea leaves was found to be stimulated by NADPH addition. The formation of one of the main metabolites, 12-hydroxy-9(Z)-dodecenoic acid is particularly NADPH-dependent. The predominant products in the absence of NADPH were hydroperoxides and in the presence of NADPH, 12-hydroxy-9(Z)-dodecenoic acid. Exogenous [1-14C]-13-hydroperoxy-9(Z), 11(E)-octadecadieoic acid and [1-14C]-12-oxo-9(Z)-dodecenoic acidwere the efficient precursors of 12-hydroxy9(Z)-dodecenoic acid. It was concluded that 12-hydroxy-9(Z)-dodecenoic acid is formed by NADPH-dependent enzymatic reduction of 12oxo-9(Z)-dodecenoic acid. The observed inhibition of linoleate oxidation in isolated microsomes by CO and metryapone suggests the involvement of cytochrome P-450 in the reaction. The relative contribution of lipoxygenase and monooxygenase activity to linoleate oxidation in microsomes is discussed.  相似文献   

13.
Biotransformation of [1-13C] labelled hexadecane, hexadecanol and hexadecanoic acid have been investigated using the yeast Torulopsis apicola. The yeast produces a microcrystalline mixture of two glycolipids, the lipophilic moiety of which consists of ω- or (ω-l)-hydroxylated hexadecanoic acid. Biosynthesis of these glycolipids takes place via hydroxylation of hexadecane, oxidation to hexadecanoic acid and ω or (ω-l)-hydroxylation of hexadecanoic acid. Feeding the cell cultures with a mixture of hexadecane and [1-13C] labelled hexadecane derivatives one observes 13C enrichment ratios which indicate that neither of the biohydroxylation or oxidation steps are rate limiting in the formation of the glycolipids, furthermore, two different monooxygenase systems appear to be involved in hydroxylation of hexadecane and hexadecanoic acid.  相似文献   

14.
In on-going studies of ‘classical’ and ring B-unsaturated oestrogens in equine pregnancy, the products of metabolism of [2,2,4,6,6-2H5]-testosterone and [16,16,17-2H3]-5,7-androstadiene-3β,17β-diol with equine placental subcellular preparations and allantochorionic villi have been identified. Using mixtures of unlabelled and [2H]-labelled steroid substrates has allowed the unequivocal identification of metabolites by twin-ion monitoring in gas chromatography–mass spectrometry (GC–MS). Two types of incubation were used: (i) static in vitro and (ii) dynamic in vitro. The latter involved the use of the Oxycell™ cartridge (Integra Bioscience Systems, St Albans, UK) whereby the tissue preparation was continuously supplied with supporting medium plus appropriate cofactors in the presence of uniform oxygenation. [2H5]-Testosterone was converted into [2H4]-oestradiol-17β, [2H4]-oestrone and [2H3]-6-dehydro-oestradiol-17 in both placental and chorionic villi preparations, but to a greater extent in the latter, confirming the importance of the chorionic villi in oestrogen production in the horse.

On the basis of GC–MS characteristics (M+ m/z 477/482 (as O-methyl oxime-trimethyl silyl ether), evidence for 19-hydroxylation of testosterone was found in static incubations, while the presence of a 6-hydroxy-oestradiol-17 was recorded in dynamic incubations (twin peaks in the mass spectrum at m/z 504/507, the molecular ion M+). It was not possible to determine the configuration at C-6. The formation of small, but significant, quantities of [2H4]-17β-dihydroequilin was also shown, and a biosynthetic pathway is proposed.

In static incubations of placental microsomal fractions, the 17β-dihydro forms of both equilin and equilenin were shown to be major metabolites of [2H3]-5,7-androstadiene-3,17-diol. Using static incubations of chorionic villi, the deuterated substrate was converted into the 17β-dihydro forms of both equilin and equilenin, together with an unidentified metabolite (base peak, m/z 504/506). The isomeric 17-dihydroequilins were also obtained using the dynamic in vitro incubation of equine chorionic villi, together with the 17β-isomer of dihydroequilenin. Confirmation of the identity of 17β-dihydroequilin and 17β-dihydroequilenin was obtained by co-injection of the authentic unlabelled steroids with the phenolic fraction obtained from various incubations. Increases in the peak areas for the non-deuterated steroids (ions at m/z 414 (17β-dihydroequilin) and 412 (17β-dihydroequilenin) (both as bis-trimethyl silyl ether derivatives) were observed. Biosynthetic pathways for formation of the ring B-unsaturated oestrogens from 5,7-androstadiene-3β,17β-diol are proposed.  相似文献   


15.
Panicum milioides, a naturally occurring species with C4-like Kranz leaf anatomy, is intermediate between C3 and C4 plants with respect to photorespiration and the associated oxygen inhibition of photosynthesis. This paper presents direct evidence for a limited degree of C4 photosynthesis in this C3-C4 intermediate species based on:

1. (a) the appearance of 24% of the total 14C fixed following 4 s photosynthesis in 14CO2-air by excised leaves in malate and aspartate and the complete transfer of label from the C4 acids to Calvin cycle intermediates within a 15 s chase in 12CO2-air;

2. (b) pyruvate- or alanine-enhanced light-dependent CO2 fixation and pyruvate stimulation of oxaloacetate- or 3-phosphoglycerate-dependent O2 evolution by illuminated mesophyll protoplasts, but not bundle sheath strands; and

3. (c) NAD-malic enzyme-dependent decarboxylation of C4 acids at the C-4 carboxyl position, C4 acid-dependent O2 evolution, and 14CO2 donation from [4-14C]C4 acids to Calvin cycle intermediates during photosynthesis by bundle sheath strands, but not mesophyll protoplasts.

However, P. milioides differs from C4 plants in that the activity of the C4 cycle enzymes is only 15 to 30% of a C4 Panicum species and the Calvin cycle and phosphoenolpyruvate carboxylase are present in both cell types. From these and related studies (Rathnam, C.K.M. and Chollet, R. (1979) Arch. Biochem. Biophys. 193, 346–354; (1978) Biochem. Biophys. Res. Commun. 85, 801–808) we conclude that reduced photorespiration in P. milioides is due to a limited degree of NAD-malic enzyme-type C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath, but not mesophyll, ribulosebisphosphate carboxylase-oxygenase.  相似文献   


16.
17.
Previous investigations demonstrated that respiratoly reductive dechlorination of vinyl chloride (VC) can be efficient even at H2 concentrations (≤2 nM) that are characteristic of SO4-reducing conditions. In the study reported here, microorganisms indigenous to a lake-bed sediment completely mineralized [1,2-14C] ethene to 1414CO2 when incubated under SO4-reducing conditions. Together, these observations argue for a novel mechanism for the net anaerobic oxidation of VC to CO2: reductive dechlorination of VC to ethene followed by anaerobic oxidation of ethene to CO2. Moreover, the results of this study suggest that reliance on ethene and/or ethane accumulation as a quantitative indicator of complete reductive dechlorination of chioroethene contaminants may not be warranted.  相似文献   

18.
Minoru Otokawa 《BBA》1973,292(3):834-836
An inhibitory effect of inorganic phosphate on the axonemal ATPase of cilia from Tetrahymena pyriformis was shown. Pi inhibited the terminal phosphate liberation from [γ-32P]ATP by 30-S dynein and inhibited the conversion of [8-14C]ATP to ADP and AMP by digitonin-extracted cilia.  相似文献   

19.
S Hauschildt  W Hirt  W Bessler 《FEBS letters》1988,230(1-2):121-124
Stimulation of murine bone marrow derived macrophages with NaF, prelabeled with [1-14C]oleate and [3H]inositol, increased the production of inositol phosphates and the release of 1,2-[14C]diacylglycerol (DAG). Moreover, NaF also induced activation of protein kinase C. These results indicate that bone marrow derived macrophages exhibit a phosphatidyl-4,5-bisphosphate phospholipase C activity, sensitive to NaF, which might be modulated by G-proteins. Activation of protein kinase C could have been mediated by NaF-induced release of DAG.  相似文献   

20.
Following a series of continuous exposures to 14CO2 for different lengths of time, leaves from Neurachne munroi (C4), N. minor (C3-C4) and N. tenuifolia (C3| were estimated to assimilate 100%, 9% and 2–4%, respectively, of atmospheric CO2 by the C4 pathway. The percentage of 14C-label appearing in malate and aspartate in leaves of N. minor progressively increased with longer exposure times indicating that a significant proportion of its C4 acids are formed as secondary products. In 14CO2/12CO2 pulse/chase experiments, the 14C-label in leaves of N. munroi was rapidly transferred from C4 acids to sugar monophosphates plus sugar diphosphates, and finally to sucrose. In leaves of N. minor, the 14C-label was slowly metabolized from the C-4 carboxyl of malate and asparate (apparent half-time = 250 s), and the formation of C4 acids as secondary products was again evident. 14C-label in serine/glycine accumulated to comparable magnitudes in both N. minor and in N. tenuifolia, but there was an initial lag phase in the accumulation of label in N. minor. C4 photosynthesis is apparently of minimal importance in reducing photorespiration in N. minor, but leaf anatomical specializations and a possible compartmentation of photorespiratory metabolism may be of considerable importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号