首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of recB and recA mutations on lambda vir and P1 vir restriction by different restriction-modification plasmid systems of E. coli was studied. It was shown that effect of R1 plasmid coded restriction-modification in E. coli K12 and E. coli B strains and pJA4620 plasmid coded restriction in E. coli K12 is observed only in RecB+ strain. Phenomenon of restriction-modification determined by R124, R245 plasmids does not depend of recB mutation. Effect of recA mutation has not been found in cultures harbouring R1, R245, R124 pJA4620 plasmids.  相似文献   

2.
目的:改造大肠杆菌苯丙氨酸生物合成的中心代谢途径,优化关键酶基因pheA、aroF、ppsA、tktA的协同表达,进一步提高苯丙氨酸产量。方法:构建重组质粒pZE12-AFPT,鉴定后通过SDS-PAGE观察其蛋白表达量,并转入缺陷菌大肠杆菌MGΔ中构建工程菌,发酵培养后测量苯丙氨酸产量,与本室保存的重组质粒MGΔpZE12-AF做对比;构建重组质粒pZE21-AF和pZA31-PT,将后者转入感受态pZE12-AF和pZE21-AF中,得到双抗性质粒,并比较转化前后苯丙氨酸的产量。结果:工程菌MGΔpZE12-AFPT的苯丙氨酸产量比对照菌株MGΔpZE12-AF提高了近1.6倍,并且实现了4个串联基因的协同表达;质粒pZA31-PT转入pZE12-AF和pZE21-AF后,苯丙氨酸产量比原质粒pZE12-AF和pZE21-AF分别提高了近0.6倍和2.8倍。结论:实现了4个关键酶基因的串联表达,改造了苯丙氨酸的生物合成途径,使得苯丙氨酸产量有所提高,为进一步得到其高产菌株奠定了基础。  相似文献   

3.
4.
Helicobacter pylori cells are naturally competent for the uptake of both plasmid and chromosomal DNA. However, we demonstrate that there are strong barriers to transformation of H. pylori strains by plasmids derived from unrelated strains. We sought to determine the molecular mechanisms underlying these barriers. Transformation efficiency was assessed using pHP1, an Escherichia coli-H. pylori shuttle vector conferring kanamycin resistance. Transformation of 33 H. pylori strains was attempted with pHP1 purified from either E. coli or H. pylori, and was successfully introduced into only 11 strains. Digestion of H. pylori chromosomes with different restriction endonucleases (REs) showed that DNA methylation patterns vary substantially among strains. The strain most easily transformed, JP26, was found to have extremely low endogenous RE activity and to lack a restriction-modification (R-M) system, homologous to MboI, which is highly conserved among H. pylori strains. When we introduced this system to JP26, pHP1 from MboI.M+ JP26, but not from wild-type JP26, transformed MboI R-M+ JP26 and heterologous MboI R-M+ wild-type H. pylori strains. Parallel studies with pHP1 from dam+ and dam- E. coli strains confirmed these findings. These data indicate that the endogenous REs of H. pylori strains represent a critical barrier to interstrain plasmid transfer among H. pylori.  相似文献   

5.
Antirestriction proteins ArdA and ArdB are specific inhibitors of type I restriction-modification enzymes. The ardA and yfeB (ardB) genes were cloned from the transmissible plasmid R64 in the pUC18 and pZE21 vectors. The R64 ArdA and ArdB proteins were shown to inhibit only restriction activity of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. In contrast to ArdA, ArdB inhibited EcoKI restriction activity only at a high intracellular concentration. Antirestriction activity of ArdB did not depend on the ClpXP protease. The yfeB (ardB) gene of the R64 plasmid is transcribed from a weak promoter located upstream of yfeA.  相似文献   

6.
Summary Several mutants ofStreptomyces aureofaciens strain were used for protoplast regeneration and plasmid transformation. All tested mutants (excepting R 8/26) were transformable by number of plasmids and shuttle vectors. The transformation of the CTC production strains by plasmid containing cloned CTC resistance gene resulted in 1,1–4 times higher antibiotic production. From the restriction analysis of plasmid, phage and chromosomal DNAs it was estimated, that all tested mutants normally contain the modification system analogous toNae I (Roberts, 1987). Mutant R 8/26 expresses not only complete restriction-modification system mentioned above but also potential second system restricting several actinophages.  相似文献   

7.
The StyLTI restriction-modification system is common to most strains of the genus Salmonella, including Salmonella typhimurium. We report here the two-step cloning of the genes controlling the StyLTI system. The StyLTI methylase gene (mod) was cloned first. Then, the companion endonuclease gene (res) was introduced on a compatible vector. A strain of S. typhimurium sensitive to the coliphage lambda was constructed and used to select self-modifying recombinant phages from a Res- Mod+ S. typhimurium genomic library in the lambda EMBL4 cloning vector. The methylase gene of one of these phages was then subcloned in pBR328 and transferred into Escherichia coli. In the second step, the closely linked endonuclease and methylase genes were cloned together on a single DNA fragment inserted in pACYC184 and introduced into the Mod+ E. coli strain obtained in the first step. Attempts to transform Mod- E. coli or S. typhimurium strains with this Res+ Mod+ plasmid were unsuccessful, whereas transformation of Mod+ strains occurred at a normal frequency. This can be understood if the introduction of the StyLTI genes into naive hosts is lethal because of degradation of host DNA by restriction activity; in contrast to most restriction-modification systems, StyLTI could not be transferred into naive hosts without killing them. In addition, it was found that strains containing only the res gene are viable and lack restriction activity in the absence of the companion mod gene. This suggests that expression of the StyLTI endonuclease activity requires at least one polypeptide involved in the methylation activity, as is the case for types I and III restriction-modification systems but not for type II systems.  相似文献   

8.
M. McKane  R. Milkman 《Genetics》1995,139(1):35-43
Chromosomal DNA from several Escherichia coli reference (ECOR) strains was transduced by bacteriophage P1 into E. coli strain K12 W3110 trpA33. Recombination patterns of the transductants were determined by restriction fragment length polymorphism over a 40-kb region centering on a single marker (trpA(+)) in the tryptophan operon. These experiments demonstrate that transduction between different strains of E. coli can result in recombinational replacements that are small in comparison to the entrant molecule (replacements average 8-14 kb, whereas P1 packages ~ 100 kb) often in a series of discrete segments. The transduction patterns generated resemble the natureal mosaic sequence patterns of the ECOR strains described in previous work. Extensive polymorphisms in the restriction-modification systems of the ECOR strains are a possible explanation for the sequence patterns in nature. To test this possibility, two transductants were back-transduced into strain K12 W3110 trpA33. The resulting patterns were strikingly different from the original transductions. The size of the replacements was greater, and no multiple replacements were observed, suggesting a role for restriction-modification systems in the transduction patterns and perhaps for the mosaic sequence patterns in nature.  相似文献   

9.
Helicobacter pylori strains demonstrate substantial variability in the efficiency of transformation by plasmids from Escherichia coli, and many strains are completely resistant to transformation. Among the barriers to transformation are numerous strain-specific restriction-modification systems in H. pylori. We have developed a method to protect plasmid DNA from restriction by in vitro site-specific methylation using cell-free extracts of H. pylori before transformation. In two cases, plasmid DNA treated with cell-free extracts in vitro acquired the restriction pattern characteristic of genomic DNA from the source strain. Among three strains examined in detail, the transformation frequency by treated plasmid shuttle and suicide vectors was significantly increased compared with mock-treated plasmid DNA. The results indicate that the restriction barrier in H. pylori can be largely overcome by specific DNA methylation in vitro. The approach described should significantly enhance the ability to manipulate gene function in H. pylori and other organisms that have substantial restriction barriers to transformation.  相似文献   

10.
Gfeller KY  Roth M  Meile L  Teuber M 《Plasmid》2003,50(3):190-201
Lactobacillus fermentum ROT1 was isolated from a raw milk dairy product. It is resistant to novobiocin, tetracycline, erythromycin and dalfopristin. A chromosomal tetracycline-resistance determinant was identified as tetM. A 19,398-bp plasmid (pLME300), present in several erythromycin-resistant strains of Lb. fermentum, was isolated from strain ROT1 and completely sequenced. Based on putative open reading frames, pLME300 contains at least four different functional regions. In region I, ORF1 shows high homologies to replication proteins of different theta-replicating plasmids. In addition, a tandem repeat of a 22-bp sequence appears 4.5 times. In region II, ORF3 may code for a methylase, and ORF4 has homologies to Mrr restriction system proteins of Deinococcus radiodurans and Escherichia coli suggesting a restriction-modification system. Region III harbours antibiotic-resistance genes, coding for a macrolide-lincosamide-streptogramin B (MLS) methylase Erm(LF) and the streptogramin A acetyltransferase Vat(E), which is identical to Vat(E) from Enterococcus faecium. Furthermore, region III shows a 91% nucleotide sequence identity to an erm-vat linkage of E. faecium. Region IV carries ORFs that appear to be involved in plasmid mobilization as characterized by a putative origin of transfer and a mobilization protein. pLME300 is the largest completely sequenced multi-resistance plasmid isolated from any Lactobacillus strain so far.  相似文献   

11.
The specifities of restriction of bacteriophages P1 and lambda controlled by R plasmids in Escherichia coli have been investigated. The isogenic strains harbouring the plasmids pAS26 coding for restriction endonuclease R.EcoRI, R245 coding for restriction endonuclease R.EcoRII and and R124 have been investigated in the present work. Modification-restriction controlled by R124 has been found to differ in specificity from those controlled by R245 and pAS26. Frequencies of restriction of bacteriophages P1vir and lambdavir specified by R124 pasmid differ from the frequencies in the strains harbouring pAS26 and R245 plasmids as well. The difference is due to the specifity of restriction-modification controlled by R124 plasmid. The data obtained are consistent with the determination of R124 specified restriction-modification activity as a novel one designated R.EcoRIII.  相似文献   

12.
In contrast to many type II restriction enzymes, dimeric proteins that cleave DNA at individual recognition sites 4-6 bp long, the SfiI endonuclease is a tetrameric protein that binds to two copies of an elongated sequence before cutting the DNA at both sites. The mode of action of the SfiI endonuclease thus seems more appropriate for DNA rearrangements than for restriction. To elucidate its biological function, strains of Escherichia coli expressing the SfiI restriction-modification system were transformed with plasmids carrying SfiI sites. The SfiI system often failed to restrict the survival of a plasmid with one SfiI site, but plasmids with two or more sites were restricted efficiently. Plasmids containing methylated SfI sites were not restricted. No rearrangements of the plasmids carrying SfiI sites were detected among the transformants. Hence, provided the target DNA contains at least two recognition sites, SfiI displays all of the hallmarks of a restriction-modification system as opposed to a recombination system in E. coli cells. The properties of the system in vivo match those of the enzyme in vitro. For both restriction in vivo and DNA cleavage in vitro, SfiI operates best with two recognition sites on the same DNA.  相似文献   

13.
A 3.6-kb endogenous plasmid was isolated from a Propionibacterium freudenreichii strain and sequenced completely. Based on homologies with plasmids from other bacteria, notably a plasmid from Mycobacterium, a region harboring putative replicative functions was defined. Outside this region two restriction enzyme recognition sites were used for insertion of an Escherichia coli-specific replicon and an erythromycin resistance gene for selection in Propionibacterium. Hybrid vectors obtained in this way replicated in both E. coli and P. freudenreichii. Whereas electroporation of P. freudenreichii with vector DNA isolated from an E. coli transformant yielded 10 to 30 colonies per microg of DNA, use of vector DNA reisolated from a Propionibacterium transformant dramatically increased the efficiency of transformation (> or =10(8) colonies per microg of DNA). It could be shown that restriction-modification was responsible for this effect. The high efficiency of the system described here permitted successful transformation of Propionibacterium with DNA ligation mixtures.  相似文献   

14.
Restriction-modification systems in Streptomyces antibioticus   总被引:2,自引:0,他引:2  
Several restriction systems were detected in different strains of Streptomyces antibioticus by using actinophages as biological indicators. Adsorption of phages to the bacteria, together with the study of the efficiency of plating gave an initial indication of restriction in three strains. The alternation of efficiency of plating values obtained from restricting and nonrestricting hosts, gave evidence for the presence of a restriction-modification system in another strain. No common modification systems were detected among the different strains tested. Two specific endonucleases with a possible role in restriction were detected in strains ATCC 11891 and ETH 7451, respectively.  相似文献   

15.
We present a method for cloning restriction-modification (R-M) systems that is based on the use of a lethal plasmid (pKILLER). The plasmid carries a functional gene for a restriction endonuclease having the same DNA specificity as the R-M system of interest. The first step is the standard preparation of a representative, plasmid-borne genomic library. Then this library is transformed with the killer plasmid. The only surviving bacteria are those which carry the gene specifying a protective DNA methyltransferase. Conceptually, this in vivo selection approach resembles earlier methods in which a plasmid library was selected in vitro by digestion with a suitable restriction endonuclease, but it is much more efficient than those methods. The new method was successfully used to clone two R-M systems, BstZ1II from Bacillus stearothermophilus 14P and Csp231I from Citrobacter sp. strain RFL231, both isospecific to the prototype HindIII R-M system.  相似文献   

16.
The plasmid profile and BamHI restriction pattern of 17 sorbitol-negative and 1 sorbitol-positive French Yersinia ruckeri strain of the American type strain were studied. The 17 sorbitol-negative strains and the American strain harbored a 62-megadalton (MDa) plasmid with an identical BamHI restriction pattern. Southern hybridization indicated that this 62-MDa plasmid is common among these various strains. The sorbitol-positive strain had four plasmid bands (70, 62, 32, and 25 MDa), and there was no comigration of the DNA fragments of these cleaved plasmids with the fragments of the 62-MDa plasmid. Hybridization of these restricted plasmids with the common 62-MDa plasmid showed a weak DNA homology. The Y. ruckeri plasmid (62 MDa) had a different molecular weight than the virulence plasmid (42 to 47 MDa) of the genus Yersinia, and they had different BamHI restriction patterns. Furthermore, no sequence of the Y. ruckeri plasmid DNA was recognized after Southern hybridization when the 47-MDa plasmid of Y. enterocolitica was used as a probe.  相似文献   

17.
The plasmid profile and BamHI restriction pattern of 17 sorbitol-negative and 1 sorbitol-positive French Yersinia ruckeri strain of the American type strain were studied. The 17 sorbitol-negative strains and the American strain harbored a 62-megadalton (MDa) plasmid with an identical BamHI restriction pattern. Southern hybridization indicated that this 62-MDa plasmid is common among these various strains. The sorbitol-positive strain had four plasmid bands (70, 62, 32, and 25 MDa), and there was no comigration of the DNA fragments of these cleaved plasmids with the fragments of the 62-MDa plasmid. Hybridization of these restricted plasmids with the common 62-MDa plasmid showed a weak DNA homology. The Y. ruckeri plasmid (62 MDa) had a different molecular weight than the virulence plasmid (42 to 47 MDa) of the genus Yersinia, and they had different BamHI restriction patterns. Furthermore, no sequence of the Y. ruckeri plasmid DNA was recognized after Southern hybridization when the 47-MDa plasmid of Y. enterocolitica was used as a probe.  相似文献   

18.
The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by varied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% compared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-modification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer.  相似文献   

19.
Incorporation patterns of donor DNA into recipient chromosomes following transduction or conjugation have been studied in the progeny of a variety of Escherichia coli crosses in which donor and recipient nucleotide sequences differ by 1-3%. Series of contiguous or variously spaced PCR fragments have been amplified from each recombinant chromosome and digested with a commercial restriction endonuclease previously shown to distinguish the respective parents in a given fragment. We conclude that entering donor DNA fragments are frequently abridged (cut and shortened) before incorporation, the cutting being due to restriction systems, and the shortening presumably due to exonuclease activity. Analysis of several backcrosses confirms, and extends to conjugation, the importance of restriction in E. coli recombination in nature. The transmission patterns in conjugation are similar to those of transduction, but (as expected) on a much larger scale. Asymmetric results of reciprocal crosses imply that mismatch frequency is not a major factor. Marked differences among the results of simple crosses according to parental strain combinations are consistent with observations that E. coli strains in nature vary dramatically in their restriction-modification systems.  相似文献   

20.
Four small cryptic plasmids were isolated from Lactobacillus casei strains, and restriction endonuclease maps of these plasmids were constructed. Three of the small plasmids (pLZ18C, pLZ19E, and pLZ19F1; 6.4, 4.9, and 4.8 kilobase pairs, respectively) were cloned into Escherichia coli K-12 by using pBR322, pACYC184, and pUC8 as vectors. Two of the plasmids, pLZ18C and pLZ19E, were also cloned into Streptococcus sanguis by using pVA1 as the vector. Hybridization by using nick-translated cloned 32P-labeled L. casei plasmid DNA as the probe revealed that none of the cryptic plasmids had appreciable DNA-DNA homology with the large lactose plasmids found in the L. casei strains, with chromosomal DNAs isolated from these strains. Partial homology was detected among several plasmids isolated from different strains, but not among cryptic plasmids isolated from the same strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号