首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oaks A  Aslam M  Boesel I 《Plant physiology》1977,59(3):391-394
When amino acids or ammonia are added to plant systems, the effects on the development of nitrate-dependent nitrate reductase activity are variable. In addition, amino acids added singly or as casein hydrolysate may not support a normal growth. A physiologically correct mixture of amino acids, one similar in composition to amino acids released by the endosperm, has been shown to support normal growth and protein synthesis in corn (Zea mays) embryos. In this investigation, we have used the mixture of corn amino acids to determine whether amino acids have an effect on the appearance or disappearance of nitrate reductase activity. The results show that these amino acids partially inhibit the induction of nitrate reductase in corn roots. The effect is more pronounced in mature root than in root tip sections. When glutamine and asparagine are included along with the "corn amino acid mixture," the inhibition is more severe. Amino acids or amino acid analogues added singly to the induction medium have a similar effect: i.e. when the induction of nitrate reductase is inhibited in the root tips (lysine, canavanine, azaserine, azetidine-2-carboxylic acid, dl-4-azaleucine, asparagine, and glutamine), that inhibition is more severe in mature root sections. Arginine enhanced the recovery of nitrate reductase in root tips but inhibited it in mature root sections. The effect of the amino acids is apparently on some phase of the induction processes (i.e. the uptake or distribution of nitrate or a direct effect on the synthesis of the enzyme) and not on the turnover of the enzyme.  相似文献   

2.
Radin JW 《Plant physiology》1977,60(4):467-469
Glycine, asparagine, and glutamine inhibited the induction by nitrate of nitrate reductase activity in root tips of cotton (Gossypium hirsutum L.). This inhibition was partially or entirely prevented when the inhibitor was applied in combination with any of several other amino acids. Studies of 14C-labeled amino acid uptake showed that, in most cases, the apparent antagonism resulted simply from competition for uptake. However, certain antagonists did not curtail uptake. The most effective of these were leucine (against all three inhibitors), and isoleucine and valine (against asparagine or glutamine, but not glycine). These results show that interactions among amino acids in the regulation of nitrate reductase induction result from at least two mechanisms, one acting on uptake of inhibitory amino acids, and the other involving true antagonism.  相似文献   

3.
The effects of various ammonium salts and amino acids on nitrite reductase (NIR) induction in isolated pea roots cultured in media containing nitrate or nitrite and either exogenous sucrose or no sugar were investigated. Thg aim of these investigations was to determine if the NIR level is subject to end-product control. The results showed that even though some ammonium salts and casamino acids can depress NIR level under certain conditions this inhibition cannot be interpreted in terms of direct end-product inhibition of NIR synthesis because their effects were dependent on the character (anion) and toxicity of the respective ammonium salt, on the presence of exogenous sucrose in the induction medium, and on the inducer of NIR. NH4HCO3 inhibited NIR induction at those concentrations which were toxic to the roots, ammonium phosphates hampered NIR induction only in roots exposed to nitrite in media containing sucrose, while casamino acids slightly depressed NIR induction only in roots exposed to nitrate and exogenous sucrose. The results further show that the basal (noninduced) NIR level changes little even under strongly toxic conditions.  相似文献   

4.
5.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

6.
Elongation of seminal and lateral roots of rice seedlings was markedly inhibited by high ammonium levels in growth medium. However, high exogenous nitrate concentrations had little inhibitory effect on root growth. The objective of this study was to elucidate the relationship between inhibition of rice root growth induced by high ammonium conditions and ammonium assimilation in the seedlings. Activity of glutamine synthetase (GS) was kept at a low level in the seminal roots of the seedlings grown under high nitrate levels. In contrast, high ammonium levels significantly enhanced the GS activity in the roots, so that Gln abundantly accumulated in the shoots. These results indicate that ammonium assimilation may be activated in the seminal roots under high ammonium conditions. Application of methionine sulfoximine (MSO), an inhibitor of GS, relieved the repression of the seminal root elongation induced by high ammonium concentrations. However, the elongation of lateral roots remained inhibited even under the same condition. Furthermore, MSO drastically increased ammonium level and remarkably decreased Gln level in the shoots grown under high ammonium conditions. These results show that, for rice seedlings, an assimilatory product of ammonium, and not ammonium itself, may serve as an endogenous indicator of the nitrogen status involved in the inhibition of seminal root elongation induced by high levels of exogenous ammonium.  相似文献   

7.
The level of endogenous sugars was inversely related to nitrate availability in young cotton (Gossypium hirsutum L.) plants, with high nitrate causing a greater decline in sugar content of roots than of shoots. High nitrate (low sugar) plants also displayed relatively more shoot growth and less root growth than low nitrate (high sugar) plants. These data are consistent with the theory that roots are poor competitors for sugar, and that sugar supply is a major factor limiting root growth in vivo.

The effects of endogenous sugar level on root growth and on nitrate reductase activity in the root were different. When root sugar level was experimentally controlled by varying nitrate concentration in the nutrient solution, root growth was less sensitive than nitrate reductase activity to sugar deficiency. Also, in sterile root tips cultured on media containing a wide range of sucrose concentrations, growth rate was considerably less sensitive to endogenous sugar deficiency than was nitrate assimilation rate. Similarly, in plants which were detopped or girdled, nitrate reductase activity in the roots declined more rapidly than did root sugars, especially glucose and fructose. These results suggest that when sugar is deficient, cotton roots preferentially use it for growth at the expense of nitrate reduction.

  相似文献   

8.
Certain amino acids inhibit growth of tobacco (Nicotiana tabacum L. var. xanthi), tomato (Lycopersicon esculentum) carrot (Daucus carota), and soybean (Glycerine max L. co. Mandarin) cell cultures when nitrate or urea are the nitrogen sources but not when ammonia is the nitrogen source. These amino acids also inhibit development of nitrate reductase activity (NADH:nitrate oxidoreductase EC 1.6.6.1) in tobacco and tomato cultures. Threonine, the most inhibitory amino acid, also inhibits nitrate uptake in tobacco cells. Arginine, and some other amino acids, abolish the inhibition effects caused by other amino acids. We suggest that amino acids inhibit assimilation of intracellular ammonium into amino acids in cells grown on nitrate or urea.  相似文献   

9.
Pea Plants ( Pisum sativaum L. ev. Little Marvel) were grown in N-free medium and when well nodulated (28 days) were supplied for 8 days with nitrate or ammonium. Over the 8 days of nitrate treatment, total amino and amide N in sap declined, and the proportion of aspartate relative to the other amino acids increased. After 8 days of treatment, nitrogenase (EC 1.18.2.1) activity in nitrate-treated plants declined to about 30% of the activity in controls even though nodules were not directly in contact with nutrient solution. Nitrogenase activity was also decreased by the addition of ammonium chloride (10 m M ). With addition of nitrate or ammonium. clear signs of senescence began to show in the nodules after 4 days. Nitrate reductase (EC 1.6.6.1) activity was induced in roots by nitrate, but decreased sharply in nodules. In response to nitrate addition, newly formed root tissues showed 3- to 5-times higher glutamine synthetase (GS. EC 6.3.1.4) activity than newly formed tissues of control plants, expressed on a protein or weight basis. In complementary experiments, when ammonium salts were used instead of nitrates, the increase in GS activity was significantly lower. GS activity decreased in nodules of treated plants and total extractable protein was 3 times lower in nodules of nitrate-treated plants than in controls at day 8 of treatment.  相似文献   

10.
Mutants and transformants of tobacco (Nicotiania tabacum L. cv Gatersleben 1) with decreased expression of nitrate reductase have been used to investigate whether nitrate accumulation in the shoot acts as a signal to alter allocation between shoot and root growth. (a) Transformants with very low (1–3% of wild-type levels) nitrate reductase activity had growth rates, and protein, amino acid and glutamine levels similar to or slightly lower than a nitrate-limited wild-type, but accumulated large amounts of nitrate. These plants should resemble a nitrate-limited wild-type, except in responses where nitrate acts as a signal. (b) Whereas the shoot:root ratio decreases from about 3.5 in a well-fertilized wild-type to about 2 in a nitrate-limited wild-type, the transformants had a very high shoot:root ratio (8–10) when they were grown on high nitrate. When they were grown on lower nitrate concentrations their shoot:root ratio declined progressively to a value similar to that in nitrate-limited wild-types. Mutants with a moderate (30–50%) decrease of nitrate reductase also had a small but highly significant increase of their shoot:root ratio, compared to the wild-type. The increased shoot:root ratio in the mutants and transformants was due to a stimulation of shoot growth and an inhibition of root growth. (c) There was a highly significant correlation between leaf nitrate content and the shoot:root ratio for eight genotypes growing at a wide range of nitrate supply. (d) A similar increase of the shoot:root ratio in nitrate reductase-deficient plants, and correlation between leaf nitrate content and the shoot:root ratio, was found in plants growing on ammonium nitrate. (f) Split-root experiments, in which the transformants were grown with part of their root system in high nitrate and the other part in low nitrate, showed that root growth is inhibited by the accumulation of nitrate in the shoot. High concentrations of nitrate in the rooting medium actually stimulate local root growth. (g) The inhibition of root growth in the transformants was relieved when the transformants were grown on limiting phosphate, even though the nitrate content of the root remained high. This shows that the nitrate-dependent changes in allocation can be overridden by other signals that increase allocation to root growth. (h) The reasons for the changed allocation were investigated in transformants growing normally, and in split-root culture. Accumulation of nitrate in the shoot did not lead to decreased levels of amino acids or protein in the roots. However, it did lead to a strong inhibition of starch synthesis and turnover in the leaves, and to decreased levels of sugars in the root. The rate of root growth was correlated with the root sugar content. It is concluded that these changes of carbon allocation could contribute to the changes in shoot and root growth.  相似文献   

11.
Anabaena sp. strain 7120 appeared more responsive to nitrogen control than A. cylindrica. Growth in the presence of nitrate strongly repressed the differentiation of heterocysts and fixation of dinitrogen in Anabaena sp. strain 7120, but only weakly in A. cylindrica. Nitrate assimilation by ammonium-grown cultures was strongly repressed in Anabaena sp. strain 7120, but less so in A. cylindrica. The repressive effect of nitrate on dinitrogen assimilation in Anabaena sp. strain 7120, compared to A. cylindrica, did not correlate with a greater rate of nitrate transport, reduction to ammonium, assimilation into amino acids, or growth. Although both species grew at similar rates with dinitrogen, A. cylindrica grew faster with nitrate, incorporated more 13NO3 into amino acids, and assimilated (transported) nitrate at the same rate as Anabaena sp. strain 7120. Full expression of nitrate assimilation in the two species occurred within 2.5 h (10 to 14% of their generation times) after transfer to nitrate medium. The induction and continued expression of nitrate assimilation was dependent on protein synthesis. The half-saturation constants for nitrate assimilation and for nitrate and ammonium repression of dinitrogen assimilation have ecological significance with respect to nitrogen-dependent growth and competitiveness of the two Anabaena species.  相似文献   

12.
13.
Stitt  Mark  Feil  Regina 《Plant and Soil》1999,215(2):143-153
Accumulation of nitrate in the shoot of low-nitrate reductase tobacco transformants leads to an increase of the shoot:root ratio to higher values than in nitrogen-sufficient wild-type plants, even though the transformants are severely deficient in organic nitrogen. In the present paper, wild-type plants and low- nitrate reductase transformants were grown on vertical agar plates to investigate whether this inhibition of root growth by internal nitrate (i) can be reversed by adding sugars to the roots and (ii) is due to slower growth of the main roots or to a decreased number of lateral roots. When grown with a low nitrate supply, the transformants resembled wild-type plants with respect to amino acid and protein levels, shoot-root allocation, lateral root frequency, and rates of growth. When the transformants were grown with a high nitrate supply in the absence of sucrose they grew more slowly and had lower levels of amino acids and protein than wild-type plants, but accumulated more nitrate and developed a high shoot:root ratio. Root length was not affected, but the number of lateral roots per plant decreased. The slower root growth was accompanied by an increase of the concentration of sugars in the roots. Addition of 2% sucrose to the medium partially reversed the high shoot:root ratio in the transformants, but did not increase the frequency of lateral roots. It is concluded that nitrate accumulation in the plant leads to decreased root growth via (i) changes in carbon allocation leading to decreased allocation of sugars to root growth, and (ii) a decrease in the number of lateral roots and a shift in the sensitivity with which root growth responds to the sugar supply. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

15.
Here we examined the effects of root hypoxia (1-2% oxygen) on the physiology of the plant and on the biochemical composition of fruits in tomato (Solanum lycopersicum cv. Micro-Tom) plants submitted to gradual root hypoxia at first flower anthesis. Root hypoxia enhanced nitrate absorption with a concomitant release of nitrite and ammonium into the medium, a reduction of leaf photosynthetic activity and chlorophyll content, and an acceleration of fruit maturation, but did not affect final fruit size. Quantitative metabolic profiling of mature pericarp extracts by (1)H NMR showed that levels of major metabolites including sugars, organic acids and amino acids were not modified. However, ammonium concentration increased dramatically in fruit flesh, and ascorbate and lycopene concentrations decreased. Our data indicate that the unfavorable effects of root hypoxia on fruit quality cannot be explained by two of the well-known effects of root hypoxia on the plant, namely a decrease in photosynthesis or an excess in ethylene production, but may instead result from disturbances in the supply of either growth regulators or ammonium, by the roots.  相似文献   

16.
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

17.
18.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

19.
A suspension culture of soybean (Glycine max L.) was grown on a defined medium in which the nitrogen sources were nitrate (25 mM) and ammonium (2 mM). The cells did not grow on nitrate unless the medium was supplemented with ammonium or glutamine. The l- and d-isomers of 12 amino acids tested singly could not replace ammonium. Most amino acids (4 mM) inhibited growth when the cells were cultured on nitrate and ammonium. Cells from five other plants (Reseda luteoli L.; Triticum monococcum L.; flax, Linum usitatissimum L.; horseradish, Amoracia lapathifolia Gilib; Haplopappus gracilis L.) grew on the defined medium with nitrate (25 mM) as the sole nitrogen source. Higher cell yields were obtained when ammonium (2 mM) or glutamine also was present. Supplementing the defined medium with high concentrations of ammonium (20 mM) inhibited growth of soybean, Haplopappus, and wheat cells. Addition of citrate (5 mM) relieved the inhibitory effects of ammonium in soybean and wheat cells but not in the Haplopappus cells.  相似文献   

20.
P. lanceolata andP. major were grown in culture solutions with nitrate or ammonium as the nitrogen source. Dry matter accumulation in the shoot was faster with nitrate than with ammonium, whilst that of the roots was not affected by the nitrogen source. As a consequence, the shoot-to-root ratio was lower with ammonium than with nitrate. InP. lanceolata, dry matter percentage of shoot and root tissue was lower with nitrate nutrition, suggesting better elongation growth than with ammonium. However, in shoot tissue ofP. major the opposite was found. The rate of root respiration declined with time, and this was almost completely due to a declining activity of the alternative path, which amounted to about 30–60% of total root respiration. Respiration via the cytochrome path was for a part of time slightly increased by ammonium, whereas the activity of the alternative path was strongly enhanced. The concentration of ethanol-soluble carbohydrates (SC) in the roots of both species was higher when nitrate was used, but no difference in the concentration of starch was found. When the plants were transferred from one nitrogen source to the other, many parameters, including the concentration of nitrate and chloride, and the shoot to root ratio, adjusted to the new situation in both species. Grassland Species Research Group, Publication no. 116.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号