首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glutamine synthetase of Suaeda maritima. In vivo and in vitro action of NaCl Glutamine synthetase (GS; EC 6.3.1.2) was isolated and characterized from roots and aerial parts of the halophyte Suaeda maritima (L.) Dum. var. macrocarpa Moq. Km values of GS were identical in both types of organ and unchanged by the salinity in the medium. Addition of NaCl in the culturing solution increased the specific activity of the enzyme especially in the aerial parts, where GS is more abundant. This increase was all the more pronounced if the plant-salt contact period was extended (between 21 and 45 days). In vitro the addition of 0 to 500 m M of salt did not affect the activity of GS at satured substrate concentrations. At low glutamate concentrations in combination with 300 m M NaCl or more, a slight competitive inhibition was observed, never over 18%. – The remarkable insensibility of GS to salinity in vitro and the stimulating effect of NaCl in vivo on the synthesis of the leaf enzyme indicates that GS plays a fundamental part in the assimilation of NH4+ in the halophyte Suaeda maritima var. macrocarpa.  相似文献   

2.
The action of NaCl on the activity of root and leaf glutamate synthase is compared in a halophyte, Suaeda maritima var. macrocarpa and in a glycophyte Phaseolus vulgaris. The addition of salt in the nutrient medium lowers the activity of glutamate synthase from Phaseolus without affecting that of Suaeda. This result, attributed to the fact that glutamate synthase is stimulated while glutamate dehydrogenase is partly inhibited in the halophyte grown in presence of high NaCl concentrations, suggests that the GS-GOGAT pathway is the primary route for ammonia assimilation. This pathway is especially active in the leaves. In vitro, NaCl (25–300mM) reduces the activity of glutamate synthase in Phaseolus as well as in Suaeda. Comparison with results obtained in situ suggests that there are differences in intracellular compartmentalization between the two types of plant.  相似文献   

3.
Abstract: Glutamate dehydrogenase (GDH), an enzyme that is central to the metabolism of glutamate, is present at high levels in the mammalian brain. Studies on human leukocytes and rat brain suggested the presence of two GDH activities differing in thermal stability and allosteric regulation, but molecular biological investigations led to the cloning of two human GDH-specific genes encoding highly homologous polypeptides. The first gene, designated GLUD1, is expressed in all tissues (housekeeping GDH), whereas the second gene, designated GLUD2, is expressed specifically in neural and testicular tissues. In this study, we obtained both GDH isoenzymes in pure form by expressing a GLUD1 cDNA and a GLUD2 cDNA in Sf9 cells and studied their properties. The enzymes generated showed comparable catalytic properties when fully activated by 1 mM ADP. However, in the absence of ADP, the nerve tissue-specific GDH showed only 5% of its maximal activity, compared with ~40% showed by the housekeeping enzyme. Low physiological levels of ADP (0.05–0.25 mM) induced a concentration-dependent enhancement of enzyme activity that was proportionally greater for the nerve tissue GDH (by 550–1,300%) than of the housekeeping enzyme (by 120–150%). Magnesium chloride (1–2 mM) inhibited the nonactivated housekeeping GDH (by 45–64%); this inhibition was reversed almost completely by ADP. In contrast, Mg2+ did not affect the nonstimulated nerve tissue-specific GDH, although the cation prevented much of the allosteric activation of the enzyme at low ADP levels (0.05–0.25 mM). Heat-inactivation experiments revealed that the half-life of the housekeeping and nerve tissue-specific GDH was 3.5 and 0.5 h, respectively. Hence, the nerve tissue-specific GDH is relatively thermolabile and has evolved into a highly regulated enzyme. These allosteric properties may be of importance for regulating brain glutamate fluxes in vivo under changing energy demands.  相似文献   

4.
A. Priebe  H.-J. Jäger 《Oecologia》1978,36(3):307-315
Summary This paper reports the effects of NaCl on the in vivo activity of glutamate dehydrogenase (GDH) and glutamic-oxaloacetic transaminase (GOT) and on the in vitro activity of GDH, both enzymes having been isolated from plants differing in salt tolerance. The plants investigated were Vicia faba (salt-sensitive), Atriplex nitens and Atriplex calotheca (more or less salt-tolerant), and Atriplex halimus (halophyte) grown at various NaCl concentrations. GDH and GOT isolated from various salt-tolerant plants grown at low NaCl concentrations were inhibited in a similar way. At high NaCl concentrations, the enzyme activities remain at constant values only in the Atriplex species. GOT was more impaired by NaCl than GDH. In the case of GOT, the double reciprocal plot indicated the type of a noncompetitive inhibition. The in vitro effect of NaCl on the activity of GDH from the differentially salt-tolerant plants was of a different kind, i.e. GDH isolated from V. faba was clearly inhibited by NaCl, whereas NaCl stimulated the activity of GDH from all Atriplex species investigated. Kinetic analysis showed that substrate inhibition of GDH from A. nitens and A. calotheca grown at non-saline conditions could be removed by NaCl. Inhibition by high NaCl concentrations at low substrate concentrations was removable by increasing substrate concentrations. Moreover, the inhibition at low substrate concentrations was shown to be competitive. GDH lost this regulatory property when the plants were pretreated with 500 mM NaCl. GDH from A. halimus also possessed this control, but in contrast to A. nitens and A. calotheca, activity and control of GDH isolated from A. halimus were stimulated by pretreating the plants with 500 mM NaCl. The results showed that DDH isolated from the salt-tolerant Atriplex species was adapted to high NaCl concentrations of the tissue. Possible mechanisms of the interactions between GDH from salt-tolerant Atriplex species and NaCl are discussed.  相似文献   

5.
The nitrate reductase activity of Suaeda maritima var. macrocarpa and var. flexilis grown on nitrate-rich substrates with 1 to 23 g/1 NaCl is maximum after 30 days of culturing. Compared to the substrate with the lowest salt content, the activity increase obtained with 7.5 g/1 of NaCl is greater in the more halophilous variety (var. macrocarpa). Even though the NaCl docs not operate directly on the induction and activity of nitrate reductase, it is responsible for this increase by modifying the CO2 assimilation and protein synthesis.  相似文献   

6.
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

7.
Aspergillus repens, a salt-pan isolate, was halotolerant. When grown for 72 h (log phase) and 144 h (beginning of stationary phase) in a medium containing 2m sodium chloride, the activities of invertase, malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), and glutamate dehydrogenase (GDH) were found to have increased. Control cultures grown in a medium devoid of 2m NaCl failed to show such changes. The activities of MDH, G6PDH, and GDH increased with rising concentrations of Na+ (as NaCl) when added up to 100mm in vitro. At higher concentrations they decreased. Changes in kinetic constants, Km and Vmax of these enzymes, as well as their de novo synthesis, were found to be some of the responses to NaCl stress-mediated changes.  相似文献   

8.
The activity of glutamate dehydrogenase (l-glutamate: NAD oxidoreductase, EC 1.4.1.2.; GDH) of rice plants changes in response to the nitrogen source supplied to the culture solution. The activity of NADH-GDH(aminating) in roots is rapidly increased by the addition of ammonia, whereas the activity in shoots is much less affected by nitrogen supply. The activity increased with increasing concentration of ammonia at least up to 14.3 mM. In roots GDH activity was found in both the mitochondrial and soluble fractions. The increase of NADH-GDH activity caused by the ammonia treatment occurs mainly in the latter fraction. The new band with GDH activity was detected on the zymogram of polyacrylamide gel electrophoresis and this inducible enzyme is active with both NAD and NADP. On the other hand, the constitutive enzyme activity active with NAD is also increased by the ammonia treatment. The increase of enzyme activity is prevented by the addition of cycloheximide or chloramphenicol to culture medium. The incorporation of 14C-leucine(U) into GDH proteins was also studied using polyacrylamide gel electrophoresis. Higher radioactivity was found in induced samples than in non-induced ones. These results show that the increase of GDH activity in roots by ammonia treatment seems to depend on de novo protein synthesis.  相似文献   

9.
Suaeda maritima L. var. macrocarpa is a halophytic species distributed in the lower parts of salt marshes of the French coasts. The influence of salinity on nitrogen nutrition and on levels of the key enzymes involved in nitrogen assimilation is analyzed by growing Suaeda under experimental conditions. Use of 15N-labelled NO3 - and NH4 + shows that both ions are effective sources of inorganic nitrogen for Suaeda. The plant is found to use NH4 + ions with a good yield, chiefly at high salinities (up to 130 mM). Nitrate reduction and ammonium assimilation by the glutamine synthetase/glutamate synthase pathway occurs mainly in leaves when Suaeda is grown at optimal saline conditions (130 mM NaCl). Absence of NaCl creates less favourable conditions and lowers the activity of nitrate reductase and glutamine synthetase but leads to an important activity of glutamate dehydrogenase in roots. This enzyme could play a major role under suboptimal environmental conditions (i.e., absence of NaCl for Suaeda maritima).Part of this paper is taken from a thesis that was submitted by J. P. Billard in fulfillment of the Doctorat d'Etat degree at the University of Caen, France.  相似文献   

10.
Li QL  Gao XR  Yu XH  Wang XZ  An LJ 《Biotechnology letters》2003,25(17):1431-1436
cDNA encoding betaine aldehyde dehydrogenase (BADH) from the halophyte Suaeda liaotungensis has been cloned, sequenced and expressed in tobacco (Nictiana tabacum 89). The full-length cDNA is 1506 base pairs (bp) long and encodes a 502 amino-acid polypeptide. The cDNA fragment coding for the mature enzyme was cloned into vector pCAMBIA-1301 for expression in tobacco. Southern blotting analysis showed that that the Badh gene was integrated into the genome of tobacco. Tobacco expressing BADH survived on MS medium containing 200 mM NaCl, whereas the untransformed plants turned yellow after about 20 d and died.  相似文献   

11.
Malic enzyme and phosphenol pyruvate carboxylase activitieshave been isolated and characterized from the shoots of Suaedamaritima plants grown in culture solution (with and withoutNaCl) or in tap water. The enzymes isolated from the lattershowed increases in both specific activity and Km values incomparison with plants grown in culture solution: however, theaddition of NaCl to the culture solution had no significanteffect on either enzyme. Malate levels were high in plants grownin tap water, reduced by an ordeT of magnitude by the additionof culture solution and then halved by the addition of NaCl. Both enzymes were inhibited in vitro by NaCl, although the additionof high concentrations of betaine and proline to the assay mediumdid not further inhibit enzyme activity. The significance ofthese results is discussed in relation to the proposed roleof betaine and proline as cytoplasmic osmoregulators. Suaeda maritima, halophyte, salt tolerance, malic enzyme, PEP carboxylase  相似文献   

12.
Salt-stimulated Phosphoenolpyruvate Carboxylase in Cakile maritima   总被引:1,自引:0,他引:1  
The effects of NaCl and other salts, in vivo and in vitro, on the activity of phosphoenolpyruvate carboxylase from the coastal C3 halophyte Cakile maritima Scop, were investigated. Plants grown with 100 mM NaCl in their growth medium yielded some 30% higher rates of phosphoenolpyruvate carboxylase activity than did salt-depleted plants. Activity of the enzyme was stimulated when NaCl was added to the reaction mixture in concentrations of up to 200 mM. The magnitude of this in vitro stimulation was similar for plants grown in the presence or absence of NaCl. The effect seems to be caused by chloride rather than by sodium ions.  相似文献   

13.
Ribonuclease (EC 2.7.7.17) activity in the obligate halophyte Suaeda maritima (L.) Dum. var. macrocarpa Moq. was studied in relation to salinity (increasing concentrations of NaCl) of incubation and growth media. In vitro, the addition of 50 to 400 m M NaCl did not affect ribonuclease activity. This result, which was also found for Phaseolus vulgaris , indicates that the hydrolase is insensitive to high saline concentrations. The subcellular distribution of RNase activity did not change significantly with the salinity of the medium or with the age of the plant. The microsomal ribonuclease activity expressed on a fresh weight basis represented in every case less than 6% of the total activity. After 23 days of culture, the absence of salt stimulated the activity of soluble ribonuclease in aerial parts of Suaeda ; inversely, the capacity of the enzyme was lower under optimal saline conditions (130 m M NaCl). This was also evidenced by transfer of whole plants from a non-saline to a saline medium. Such a saline shock caused a decrease followed by a stabilization of the capacity of ribonuclease from Suaeda . The influx of NaCl in the tissues lowered the activity of the hydrolase.  相似文献   

14.
Endogenous abscisic acid contents were measured by gas-liquidchromatography in shoots of Suaeda maritima growing both inthe steady state over a range of salinities and over a time-coursefollowing an increase in the culture solution salinity of betweenapproximately 100 and 400 mol m–3 NaCl. In steady-stateplants, the ABA content was maximal in the absence of salt at41 ng g–1 fr. wt., declining to a minimum at 200 mol m–3NaCl of 24 ng g–1 fr. wt. Increase of culture solutionsalinity resulted in a marked increase in shoot ABA which wasmaximal after 6 h or 24 h in plants previously growing at 200mol m–3 NaCl and in the absence of salt, respectively.Additionally, culture solution water potentials were loweredby 1.0 MPa (equivalent to raising the salt concentration byaround 200 mol m–3); this resulted in a similar increasein endogenous ABA content to that brought about by an iso-osmoticsalt increase. Results are discussed in relation to the possiblerole of ABA in halophyte salt tolerance mechanisms. Key words: Suaeda, halophyte, abscisic acid, salt tolerance  相似文献   

15.
Aims: To screen the glutamate dehydrogenase (GDH) activity of nonstarter lactic acid bacteria (NSLAB) and to determine the effects of temperature, pH and NaCl values used for cheese ripening on enzyme activity and expression of GDH gene. Methods and Results: A subcellular fractionation protocol and specific enzyme assays were used. The effect of temperature, pH and NaCl on enzyme activity was evaluated. The expression of GDH gene was monitored by real‐time PCR. One selected strain was also used as adjunct starter for cheese making to evaluate the catabolism of free amino acids and the production of volatile organic compounds (VOC) during cheese ripening. The cytoplasm fraction of all strains showed in vitro NADP‐dependent GDH activity. NADP‐GDH activity was markedly strain dependent and varied according to the interactions between temperature, pH and NaCl. Lactobacillus plantarum DPPMA49 showed the highest NADP‐GDH activity under temperature, pH and NaCl values found during cheese ripening. RT‐PCR analysis revealed that GDH expression of Lact. plantarum DPPMA49 was down‐expressed by low temperature (<13°C) and over‐expressed by NaCl (1·87–5·62%). According to NADP‐GDH activity, the highest level of VOC (alcohols, aldehydes, miscellaneous and carboxylic acids) was found in cheeses made with DPPMA49. Conclusions: The results of this study may be considered as an example of the influence of temperature, pH and NaCl on enzyme activity and expression of functional genes, such as GDH, in cheese‐related bacteria. Significance and Impact of the Study: It focuses on the phenotypic and molecular characterization of the NADP‐GDH in lactobacilli under cheese‐ripening conditions. The findings of this study contribute to the knowledge about enzymes involved in the catabolism of amino acids, to be used as an important selection trait for cheese strains.  相似文献   

16.
17.
NADH specific glutamate dehydrogenase (GDH) activity was examined in roots and shoots of maize seedlings grown in half-strength Hoagland’s solution containing NH4NO3 as sole nitrogen source under irradiance of 60 W m−2 and temperature of 25±2°C. When 5,5′-dithio-bis (2-nitrobenzoic acid) (DTNB) was supplied to the assay mixture, it inhibited NADH-GDH activity in both roots and shoots, irrespective of whether the enzymes were extracted from light- or dark-treated roots and shoots. In each case the inhibition increased with the increase in DTNB concentration. At the maximum concentration of DTNB used (20 μM) the inhibition of shoot NADH-GDH was more pronounced than inhibition of root enzyme. This indicated differences in shoot and root NADH-GDH.  相似文献   

18.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent K m values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent K m values were 0.1 mM for -ketoglutarate and 0.22 mM for glutamine.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase  相似文献   

19.
20.
Characteristics of the three major ammonia assimilatory enzymes, glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT) in Corynebacterium callunae (NCIB 10338) were examined. The GDH of C. callunae specifically required NADPH and NADP+ as coenzymes in the amination and deamination reactions, respectively. This enzyme showed a marked specificity for -ketoglutarate and glutamate as substrates. The optimum pH was 7.2 for NADPH-GDH activity (amination) and 9.0 for NADP+-GDH activity (deamination). The results showed that NADPH-GDH and NADP+-GDH activities were controlled primarily by product inhibition and that the feedback effectors alanine and valine played a minor role in the control of NADPH-GDH activity. The transferase activity of GS was dependent on Mn+2 while the biosynthetic activity of the enzyme was dependent on Mg2+ as essential activators. The pH optima for transferase and biosynthetic activities were 8.0 and 7.0, respectively. In the transfer reaction, the K m values were 15.2 mM for glutamine, 1.46 mM for hydroxylamine, 3.5×10-3 mM for ADP and 1.03 mM for arsenate. Feedback inhibition by alanine, glycine and serine was also found to play an important role in controlling GS activity. In addition, the enzyme activity was sensitive to ATP. The transferase activity of the enzyme was responsive to ionic strength as well as the specific monovalent cation present. GOGAT of C. callunae utilized either NADPH or NADH as coenzymes, although the latter was less effective. The enzyme specifically required -ketoglutarate and glutamine as substrates. In cells grown in a medium with glutamate as the nitrogen source, the optimum pH was 7.6 for NADPH-GOGAT activity and 6.8 for NADH-GOGAT activity. Findings showed that NADPH-GOGAT and NADH-GOGAT activities were controlled by product inhibition caused by NADP+ and NAD+, respectively, and that ATP also had an important role in the control of NADPH-GOGAT activity. Both activities of GOGAT were found to be inhibited by azaserine.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号