首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
土壤微生物在植物获得养分中的作用   总被引:19,自引:0,他引:19  
沈仁芳  赵学强 《生态学报》2015,35(20):6584-6591
大量施用化肥是当今农业的一个重要特征。化肥为粮食增产做出了巨大贡献,同时也带来一系列问题,如土壤酸化、水体富营养化、温室气体排放、资源耗竭等,直接威胁着农业可持续发展。土壤微生物是陆地生态系统植物多样性和生产力的重要驱动者,直接参与了植物获得养分和土壤养分循环两个过程。因此,通过调控土壤微生物的功能,有望降低农业对化肥的过分依赖。介绍了共生固氮菌、菌根真菌和根际促生菌对植物获得养分能力的影响及其机制,分析了土壤微生物对土壤氮、磷循环的影响及其与土壤养分生物有效性、养分损失的关系。依据这些知识,提出了改善植物营养、降低化肥施用的土壤微生物途径。虽然大量试验已证明了土壤微生物在改善植物营养中的重要作用,但是大面积应用土壤微生物技术来改善植物营养还存在不少问题。随着以后对这方面研究的加强以及上述问题的不断解决,土壤微生物有望在降低化肥施用量和维持农业可持续发展中做出重要贡献。  相似文献   

2.
土壤微生物与土壤质量、健康、植物的生产力和农业的可持续发展密切相关。任何对土壤中微生物的扰动都可能影响土壤的长期生产力,并可能产生严重后果。大量研究结果表明,肥料类型、施肥处理年限长短、施肥水平高低及施肥措施都会造成土壤成分的变化,进而影响土壤中微生物的生长以及繁殖。简要介绍了微生物量的几种测定方法,综述了各种养分管理措施对农田生态系统中土壤微生物量的影响,从而了解土壤微生物因人类对土壤的利用而发生的变化,以期为农业的可持续发展和生态环境的保护提供理论依据。  相似文献   

3.
大数据时代土壤微生物地理学研究综述   总被引:2,自引:1,他引:1  
靳一丹  陆雅海 《生态学报》2022,42(13):5152-5164
土壤蕴含极为丰富的微生物多样性,它们在物质分解、元素生物地球化学循环、植物生产力和生物健康中扮演着关键角色。理解土壤微生物的生物地理分布格局、形成机制与群落构建规则,有助于预测在全球变化背景下土壤微生物组的功能演变及其对陆地生态系统的调控影响。自21世纪以来,土壤微生物生物地理学在各种大型国际微生物计划的推动下逐步形成了分子生物学技术耦合大数据分析的模式,实现了多种尺度上的关联研究。阐述了土壤微生物在分布格局和群落构建规则方面的研究进展,重点介绍了分子生物学技术和大数据分析在土壤微生物生物地理研究中的应用,对土壤微生物生物地理学未来在微生物分类分辨率、模型验证与构建和功能基因地理学的发展方向进行了展望。  相似文献   

4.
铜污染土壤的生物修复研究进展   总被引:1,自引:0,他引:1  
随着工业化与农业化进程的加快,土壤重金属污染问题日益突出。铜(Cu)既是生命体生长发育的必需微量元素,也是重金属污染物之一。土壤中过量的Cu不仅会对植物产生毒害,而且能够通过食物链的富集作用,对人类健康造成严重威胁。生物修复技术作为治理重金属污染土壤的一种新型技术受到广泛关注。文中对生物修复的主要技术如植物修复、微生物修复、植物-微生物联合修复、动物修复等在治理Cu污染土壤方面的研究进展进行综述,以期为重金属污染土壤有效治理和可持续农业的发展提供理论依据。  相似文献   

5.
土壤微生物资源管理、应用技术与学科展望   总被引:4,自引:0,他引:4  
林先贵  陈瑞蕊  胡君利 《生态学报》2010,30(24):7029-7037
土壤中蕴藏着高度的微生物多样性,在陆地生态系统中发挥着非常重要的功能,加强对土壤微生物资源的综合管理与开发应用是提升生态系统稳定性与生产力及农产品质量的重要途径。首先,土壤微生物多样性具有全球性的重大意义,有待完善对土壤微生物的检测与监测技术研究,进而实现土壤微生物多样性与土壤功能的耦合以及对土壤质量的评定;其次,土壤微生物作为一种宝贵的生产资料和可持续资源,要加强其在土壤肥力强化与保育、土壤障碍消减与调节、土壤污染控制与修复等3个领域的应用研究。最后,未来土壤微生物学发展将会形成土壤微生物系统学、土壤微生物过程学与土壤微生物功能学3个子学科,要建立土壤微生物种质资源库与遗传信息库,推进土壤微生物生理代谢过程、生物化学过程及生态行为过程的研究,联结土壤微生物与土壤功能的关系,并从土壤中的功能微生物出发对环境变化作出积极响应和主动调控。此外,原创性方法的建立与应用是限制土壤微生物学发展的技术瓶颈,联合生物地理学与生物信息学破译重要基因的特定生态功能,并将其应用到生态模型以及生态系统未知领域的研究中去,是土壤微生物学面临的挑战。  相似文献   

6.
DGGE技术在森林土壤微生物多样性研究中的应用   总被引:2,自引:0,他引:2  
微生物在森林土壤物质转化中扮演着重要角色,与森林的林型、土壤理化性质存在着密切关系.森林土壤微生物多样性及其变化在一定程度上反映了土壤环境的生产力和稳定性,对表征森林演替,土壤生态修复等有重要意义.变性梯度凝胶电泳(DGGE)技术测定微生物多样性具有快捷、高效和可重复性高等优点.简要介绍DGGE技术的原理,分析这一技术的局限性和优化方法.重点以实例说明该技术在森林土壤微生物多样性研究中的应用现状,展望该技术的发展前景,以期能为今后这一领域的研究提供科学依据.  相似文献   

7.
张平究  李恋卿  潘根兴  张俊伟 《生态学报》2004,24(12):2818-2824
农业管理措施影响下土壤微生物群落结构的变化是农业土壤质量研究的前沿问题。运用化学分析方法和 PCR- DGGE技术从土壤微生物碳氮量及基因多样性角度研究了长期不同施肥措施下太湖地区代表性水稻土 -黄泥土的表土微生物活性与分子多样性的变化。结果表明 ,施用化肥以及化肥和有机肥配施在提高土壤有机碳含量的同时 ,不仅提高了水稻土的微生物碳氮量 ,而且改变了微生物的群落结构 ;与长期单施化肥相比 ,长期化肥配施有机肥不仅显著提高了土壤微生物碳氮量 ,而且提高了土壤微生物的分子多样性 ;就土壤的微生物分子群落相似性来说 ,单施化肥下与未施肥下相近 ,而化肥配施秸秆下与化肥配施猪粪下接近 ,说明土壤的有机培肥对土壤微生物群落结构有重要影响。长期单施化肥下水稻产量的年际波动性显著大于化肥配施有机肥下 ,这进一步佐证了化肥配施有机肥显著促进了水稻土的生态系统初级生产力与较高的土壤生态系统稳定性。应用PCR- DGGE技术所揭示的微生物分子群落结构特点可以指示水稻土 10 a尺度的不同农业管理措施下的土壤质量变化  相似文献   

8.
根际土壤动物及其对植物生长的影响   总被引:1,自引:0,他引:1  
朱永恒  李克中  陆林 《生态学杂志》2012,31(10):2688-2693
土壤动物是根际土壤生物的重要组成部分,对于营养物质的转化、储存和释放,土壤微生物的调节及土壤理化性质的改变都发挥着积极作用,最终影响地上植物生长及其生产力。本文综述了土壤动物在根际土壤生态系统中的作用、根际土壤动物与土壤微生物之间的关系、根际土壤动物对植物生长的影响等。就目前根际土壤动物及其对植物生长的影响研究中亟待解决的一些问题进行了探讨,并提出今后应加强研究的方向。  相似文献   

9.
为了保证农业丰产,使用666防治地下害虫是通常采用的措施之一。大家都知道,土壤微生物的活动是与农业增产密切相关的。那么666是否对土壤微生物的活动有影响呢?为了了解这个问题,中国科学院北京微生物研究室进行了一些试验。现将初步观察的结果,报导于后。 试验是从三方面进行的:(i)666对土壤微生物的生化活性的影响;(ii)666对土壤微生物  相似文献   

10.
在众多农业生产制品中,微生物肥料在促进农业生产可持续方面发挥了重要的作用。因此,本文对微生物肥料及其研究问题进行了阐述,并且从肥料菌种、肥料作用和肥料生产这三个方面对微生物肥料的研究现状展开了分析。而在此基础上,本文对微生物肥料的发展趋势展开了探讨,从而为关注这一话题的人们提供参考。  相似文献   

11.
土壤生物与可持续农业研究进展   总被引:1,自引:0,他引:1  
农业的可持续发展是人类文明持续繁荣的重要保障。从原始农业到工业化农业的发展历程,是"自然力"不断削弱,"人为调控力"不断加强的过程。新兴的可持续农业,则希望将人为调控和自然过程协调融合,建立近自然的高效的现代农业体系。但是,面对土壤生物极高的多样性、生物和非生物过程的复杂互作及其高度的时空异质性,基于还原论的传统科学研究方法探究地下生态系统的"自然过程"困难重重。人为管理措施对农田生态过程调控的针对性和调控效果受到极大限制。尽管如此,土壤生物在生态系统服务中的作用已在世界范围内得到空前重视。如何充分发挥土壤生物在可持续农业中的作用,已成为现代农业研究领域的重要突破口。简述了土壤生物与可持续农业研究的学科发展历史,总结了农业管理措施对土壤生物及土壤食物网特征的影响,突出了土壤生物群落在可持续农业模式中土壤结构改善、土壤肥力提高和化肥农药减施等方面的积极作用;最后探讨了当前的研究难点和未来的研究方向,并对如何充分发挥土壤生物在现代农业中的贡献进行了初步的思考。认为:土壤有机质,土壤结构和土壤食物网以及三者的内在联系是可持续农业研究的关键。土壤有机质管理是调控土壤结构、土壤食物网及生态系统生...  相似文献   

12.
This article emphasizes on the present urgent need to think in “Holistic Dimensions” to achieve a sustainable agro-ecosystem. In this respect, the complex network of dynamic interactions in the agro-ecosystem soil at spatiotemporal dimensions holds crucial importance. It reflects the inherent tendency of dynamic ecosystems to achieve a more efficient state successively through improved interactions. The short-sighted and inefficient agro-management during Green Revolution decades has been detrimental to these interactions in agricultural soils, which is widely evident by its boomerang effects (i.e. declining efficiency, productivity and multi-functionality). It jeopardized the internal regulation in our agro-ecosystem's functioning by erosion of efficiency building interactions among biotic and abiotic components. Therefore, a bottom-up as well as top-down approach in the soil management is required to restore and sustain the unaccounted but indispensible ecological subsidies for sustainable agriculture and development, globally. We propose a “commercial ecological agriculture” which should be an amalgamation of sustainable agricultural practices and supported by a progressive co-ordination among all the stakeholders via participatory learning and adaptation with time. It should be least-disturbing, resilience-building, resource (i.e. energy and nutrient) use efficient, site-specific, labor and skill-intensive, low-input, diversified and integrated, and intimately harmonized with nature. It may potentially provide us agricultural sustainability with time in real sense. It would be primarily based on management of interactions indirectly through identification of integrative variables as surrogate, which may help to achieve internal regulation or self-reliance in agroecosystems. Further, it would be helpful to eliminate the widening socio-economic divide and in mitigation of global change in environment (i.e. air, water and soil) and climate. Additionally, it would improve and restore the multifaceted potential of soil, thus quality and productivity, through improved internal regulation on resource-use efficiency.  相似文献   

13.
松嫩平原黑土区不同养分循环结构农业经营制度比较研究   总被引:15,自引:6,他引:15  
采用模拟养分循环开展长期定位试验的方法对黑土区不同养分循环结构农业经营制度进行了比较研究,结果表明,有机-无机相结合的农业制度包括传统农业与“石油农业”两者之长,是我国农业生产常久不衰、提高系统生产力和养分循环再利用的有效途径.  相似文献   

14.
Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant–microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.  相似文献   

15.
《Trends in biotechnology》2022,40(12):1503-1518
Modern agriculture has evolved technological innovations to sustain crop productivity. Recent advances in biorefinery technology use crop residue as feedstock, but this raises carbon sequestration concerns as biorefining utilizes carbon that would otherwise be returned to the soil, thus causing a decline in crop productivity. Furthermore, biorefining generates abundant lignin waste that significantly impedes the efficiency of biorefineries. Valorizing lignin into advanced nanobiotechnologies for agriculture provides a unique opportunity to balance bioeconomy and soil carbon sequestration. Integration of agricultural practices such as utilization of agrochemicals, fertilizers, soil modifiers, and mulching with lignin nanobiotechnologies promotes crop productivity and also enables advanced manufacturing of high-value bioproducts from lignin. Lignin nanobiotechnologies thus represent state-of-the-art innovations to transform both the bioeconomy and sustainable agriculture.  相似文献   

16.
In this article we show that technological development in agriculture exhibits general trends when assessed on a large scale. These trends are generated by changes in the larger socioeconomic context in which the farming system operates. We characterize agricultural performance by land and farm labor productivity and the pattern of use of technological inputs. By means of a cross-sectional analysis of agricultural performance of 20 countries (at the national level), we show that increases in demographic pressure and socioeconomic pressure (increases in average income and labor productivity) in society are the main driving forces of technological development in agriculture. Further, it is shown that the ecological impact of farming (environmental loading) is linked to the particular combination of land productivity and labor productivity at which the agricultural sector operates (through the particular mix and the level of inputs used in agricultural production). Briefly we discuss the role of international trade in agricultural policies and performance. Special attention is given to the situation of Chinese agriculture.  相似文献   

17.
The pattern of forest land clearing in a region can be viewed as a gauge of sustainable (or unsustainable) use of agricultural and forest resources. In this study we examine the geographical distribution of land clearing potential in the Canadian agriculture–forestry interface and propose a new landscape-scale indicator that quantifies this potential. We consider the possibility that forested land will be cleared for agriculture as a trade-off between the land's capacity to support agriculture and its comparative value if it remains forested. However, this trade-off is complicated by the land's susceptibility to fragmentation (and subsequent conversion), which derives from the local pattern of forest, agriculture and other land cover types. We find the locations in the agriculture–forestry interface with the highest land clearing potential by delineating nested multi-attribute frontiers in the dimensions of the land's agricultural capacity, its estimated forest productivity and its fragmentation potential. The multi-attribute frontier concept addresses our lack of knowledge about the relative importance of these multiple drivers of land conversion by objectively combining them into a single-dimensional land clearing pressure metric in a geographical setting. Overall, our approach provides a simple yet informative indicator which reveals the geographical stratification of land clearing pressures across large regions. In general, the spatial delineation of areas with high land clearing potential agrees well with recent evidence of land clearing and deforestation events in Canada.  相似文献   

18.
Microbial inoculants have gained increasing attention worldwide as an eco-friendly solution for improving agriculture productivity. Several studies have demonstrated their potential benefits, such as enhanced resistance to drought, salinity, and pathogens. However, the beneficial impacts of inoculants remain inconsistent. This variability is attributed to limited knowledge of the mechanisms by which microbial inoculants affect crop growth and a lack of ecological characteristics of these inoculants that limit our ability to predict their beneficial effects. The first important step is believed to be the evaluation of the inoculant's ability to colonize new habitats (soils and plant roots), which could provide crops with beneficial functions and improve the consistency and efficiency of the inoculants. In this study, we aimed to investigate the impact of three microbial inoculants (two bacterial: P1 and P2, and one fungal: P3) on the growth and stress responses of three wheat varieties in two different soil types under drought conditions. Furthermore, we investigated the impact of microbial inoculants on soil microbial communities. Plant biomass and traits were measured, and high-throughput sequencing was used to characterize bulk and rhizosphere soil microbiomes after exposure to drought stress. Under drought conditions, plant shoot weight significantly increased (11.37%) under P1 treatments compared to uninoculated controls. In addition, total nitrogen enzyme activity increased significantly under P1 in sandy soil but not in clay soil. Importantly, network analyses revealed that P1, consisting of Bacillus paralicheniformis and Bacillus subtilis, emerged as the keystone taxa in sandy soil. Conversely, P2 and P3 failed to establish as keystone taxa, which may explain their insignificant impact on wheat performance under drought conditions. In conclusion, our study emphasizes the importance of effective colonization by microbial inoculants in promoting crop growth under drought conditions. Our findings support the development of microbial inoculants that robustly colonize plant roots for improved agricultural productivity.  相似文献   

19.
Much of the primary forest in the eastern United States that was converted to farmland between 1600 and 1900 has reverted back to second growth forest as a result of agriculture abandonment. This reversion back to forest gives soil productivity a chance to recover, though the rates of recovery are not well understood. Understanding the legacy effects of past disturbances like agriculture can provide important insights to support ecological restoration efforts on disturbed soils. Our goal with this study was to further understand the effects of forest development on soil productivity after agriculture abandonment. We used a chronosequence approach to examine soil properties over a 60‐year temporal scale of forest development on abandoned agricultural lands in Saratoga and Rensselaer Counties in New York, U.S.A. We measured soil properties within this chronosequence to test the hypothesis that there would be measurable recoveries of soil physical properties and fertility over time. We observed rapid recovery of physical properties (lower bulk density and higher macroporosity) of surface soils within 5–10 years after agricultural abandonment. However, we found a legacy effect of agricultural compaction still evident in subsoils, with soil strength measurements indicating that past agricultural practices still limited root growth 55–60 years after abandonment. Soil percent organic matter and mineralizable nitrogen (N) both increased with forest development, but biomass accumulation may be slowed by limited root growth in the subsoil due to high strength. We recommend assessing subsoil physical properties when developing ecological restoration plans for agricultural lands.  相似文献   

20.
Abstract

The soil microbiota plays a major role in maintaining the nutrient balance, carbon sink, and soil health. Numerous studies reported on the function of microbiota such as plant growth-promoting bacteria and fungi in soil. Although microalgae and cyanobacteria are ubiquitous in soil, very less attention has been paid on the potential of these microorganisms. The indiscriminate use of various chemicals to enhance agricultural productivity led to serious consequences like structure instability, accumulation of toxic contaminants, etc., leading to an ecological imbalance between soil, plant, and microbiota. However, the significant role of microalgae and cyanobacteria in crop productivity and other potential options has been so far undermined. The intent of the present critical review is to highlight the significance of this unique group of microorganisms in terms of maintaining soil fertility and soil health. Beneficial soil ecological applications of these two groups in enhancing plant growth, establishing interrelationships among other microbes, and detoxifying chemical agents such as insecticides, herbicides, etc. through mutualistic cooperation by synthesizing enzymes and phytohormones are presented. Since recombinant technology involving genomic integration favors the development of useful traits in microalgae and cyanobacteria for their potential application in improvement of soil fertility and health, the merits and demerits of various such advanced methodologies associated in harnessing the biotechnological potential of these photosynthetic microorganisms for sustainable agriculture were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号