首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Antimicrobial peptides (AMPs) are compounds widely distributed in nature that display activity against a broad spectrum of pathogens. Amphibian skin, as an organ rich in pharmacologically active peptides, appears to be an interesting source of novel AMPs. Aurein 1.2 (GLFDIIKKIAESF-NH2) is a short 13-residue antimicrobial peptide primarily isolated from the skin secretions of Australian bell frogs. In this study, the alanine scan of aurein 1.2 was performed to investigate the effect of each amino acid residue on its biological and physico-chemical properties. The biological studies included determination of minimum inhibitory concentration, activity against biofilm, and inhibitory effect on its formation. Moreover, the hemolytic activity as well as serum stability was determined. The hydrophobicity of peptides and their self-assembly were investigated using reversed-phase chromatography. In addition, their helicity was calculated from circular dichroism spectra. The results not only provided information on structure-activity relationship of aurein 1.2 but also gave insights into design of novel analogs of AMPs in the future.

  相似文献   

2.
Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a “coiled coil” structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus.  相似文献   

3.
Seventeen aurein peptides are present in the secretion from the granular dorsal glands of the Green and Golden Bell Frog Litoria aurea, and 16 from the corresponding secretion of the related Southern Bell Frog L. raniformis. Ten of these peptides are common to both species. Thirteen of the aurein peptides show wide-spectrum antibiotic and anticancer activity. These peptides are named in three groups (aureins 1-3) according to their sequences. Amongst the more active peptides are aurein 1.2 (GLFDIIKKIAESF-NH2), aurein 2.2 (GLFDIVKKVVGALGSL-NH2) and aurein 3.1 (GLFDIVKKIAGHIAGSI-NH2). Both L. aurea and L. raniformis have endoproteases that deactivate the major membrane-active aurein peptides by removing residues from both the N- and C-termini of the peptides. The most abundant degradation products have two residues missing from the N-terminal end of the peptide. The solution structure of the basic peptide, aurein 1.2, has been determined by NMR spectroscopy to be an amphipathic alpha-helix with well-defined hydrophilic and hydrophobic regions. Certain of the aurein peptides (e.g. aureins 1.2 and 3.1) show anticancer activity in the NCI test regime, with LC50 values in the 10-5-10-4 M range. The aurein 1 peptides have only 13 amino-acid residues: these are the smallest antibiotic and anticancer active peptides yet reported from an anuran. The longer aurein 4 and 5 peptides, e.g. aurein 4.1 (GLIQTIKEKLKELAGGLVTGIQS-OH) and aurein 5. 1 (GLLDIVTGLLGNLIVDVLKPKTPAS-OH) show neither antibacterial nor anticancer activity.  相似文献   

4.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into α-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D2O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1 > aurein 1.2 > citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1 > aurein 1.2 ≅ citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

5.
Aurein 1.2 is an antimicrobial and anticancer peptide isolated from an Australian frog. To improve our understanding of the mechanism of action, two series of peptides were designed. The first series includes the N-terminal membrane anchor of bacterial glucose-specific enzyme IIA, aurein 1.2, and a newly identified aurein 1.2 analog from human LL-37 (LLAA). The order of antibacterial activity is LLAA > aurein 1.2 >> the membrane anchor (inactive). The structure of LLAA in detergent micelles was determined by 1H NMR spectroscopy, including structural refinement by natural abundance 13Cα, 13Cβ, and 15N chemical shifts. The hydrophobic surface area of the 3D structure is related to the retention time of the peptide on a reverse-phase HPLC column. The higher activity of LLAA compared to aurein 1.2 was attributed to additional cationic residues that enhance the membrane perturbation potential. The second peptide series was created by changing the C-terminal phenylalanine (F13) of aurein 1.2 to either phenylglycine or tryptophan. A closer or further location of the aromatic rings to the peptide backbone in the mutants relative to F13 is proposed to cause a drop in activity. Phenylglycine with unique chemical shifts may be a useful NMR probe for structure-activity relationship studies of antimicrobial peptides. To facilitate potential future use for NMR studies, random-coil chemical shifts for phenylglycine (X) were measured using the synthetic peptide GGXGG. Aromatic rings of phenylalanines in all the peptides penetrated 2-5 Å below the lipid head group and are essential for membrane targeting as illustrated by intermolecular peptide-lipid NOE patterns.  相似文献   

6.
Effective antimicrobial peptides (AMPs) distinguish between the host and microbial cells, show selective antimicrobial activity and exhibit a fast killing mechanism. Although understanding the structure-function characteristics of AMPs is important, the impact of the peptides on the architecture of membranes with different lipid compositions is also critical in understanding the molecular mechanism and specificity of membrane destabilisation. In this study, the destabilisation of supported lipid bilayers (SLBs) by the AMP aurein 1.2 was quantitatively analysed by dual polarisation interferometry. The lipid bilayers were formed on a planar silicon oxynitride chip, and composed of mixed synthetic lipids, or Escherichiacoli lipid extract. The molecular events leading sequentially from peptide adsorption to membrane lysis were examined in real time by changes in bilayer birefringence (lipid molecular ordering) as a function of membrane-bound peptide mass. Aurein 1.2 bound weakly without any change in membrane ordering at low peptide concentration (5 μM), indicating a surface-associated state without significant perturbation in membrane structure. At 10 μM peptide, marked reversible changes in molecular ordering were observed for all membranes except DMPE/DMPG. However, at 20 μM aurein 1.2, removal of lipid molecules, as determined by mass loss with a concomitant decrease in birefringence during the association phase, was observed for DMPC and DMPC/DMPG SLBs, which indicates membrane lysis by aurein. The membrane destabilisation induced by aurein 1.2 showed cooperativity at a particular peptide/lipid ratio with a critical mass/molecular ordering value. Furthermore, the extent of membrane lysis for DMPC/DMPG was nearly double that for DMPC. However, no lysis was observed for DMPC/DMPG/cholesterol, DMPE/DMPG and E. coli SLBs. The extent of birefringence changes with peptide mass suggested that aurein 1.2 binds to the membrane without inserting through the bilayer and membrane lysis occurs through detergent-like micellisation above a critical P/L ratio. Real-time quantitative analysis of the structural properties of membrane organisation has allowed the membrane destabilisation process to be resolved into multiple steps and provides comprehensive information to determine the molecular mechanism of aurein 1.2 action.  相似文献   

7.
Antibacterial peptides have potential as novel therapeutic agents for bacterial infections. Aurein 1.2 is one of the smallest antibacterial peptides extracted from an anuran. LLAA is a more active analogue of aurein 1.2. Antibacterial peptides usually accomplish their function by interacting with bacterial membrane selectively. In this study, we tried to find the reasons for the stronger antibacterial activity of LLAA compared with aurein 1.2. For this purpose, the interaction of aurein 1.2 and LLAA with dipalmitoylphosphatidylcholine (DPPC) was investigated by molecular dynamics (MD) simulation. In addition, the structure of peptides and their antibacterial activity were investigated by circular dichroism (CD) and dilution test method, respectively. MD results showed that LLAA is more flexible compared with aurein 1.2. Furthermore, LLAA loses its structure more than aurein 1.2 in the DPPC bilayer. A higher amount of water molecules penetrate into bilayer in the presence of LLAA relative to aurein 1.2. According to the antibacterial result that indicated LLAA is remarkably more active than aurein 1.2, it can be concluded that flexibility of the peptide is a determining factor in antibacterial activity. Probably, flexibility of the peptides facilitates formation of effective pores in the lipid bilayer.  相似文献   

8.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an α-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The 31P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC35 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.  相似文献   

9.
《Biophysical journal》2022,121(8):1512-1524
Antimicrobial peptides are promising therapeutic agents to mitigate the global rise of antibiotic resistance. They generally act by perturbing the bacterial cell membrane and are thus less likely to induce resistance. Because they are membrane-active molecules, it is critical to verify and understand their potential action toward eukaryotic cells to help design effective and safe drugs. In this work, we studied the interaction of two antimicrobial peptides, aurein 1.2 and caerin 1.1, with red blood cell (RBC) membranes using in situ 31P and 2H solid-state NMR (SS-NMR). We established a protocol to integrate up to 25% of deuterated fatty acids in the membranes of ghosts, which are obtained when hemoglobin is removed from RBCs. Fatty acid incorporation and the integrity of the lipid bilayer were confirmed by SS-NMR and fluorescence confocal microscopy. Leakage assays were performed to assess the lytic power of the antimicrobial peptides. The in situ perturbation of the ghost membranes by aurein 1.2 and caerin 1.1 revealed by 31P and 2H SS-NMR is consistent with membrane perturbation through a carpet mechanism for aurein 1.2, whereas caerin 1.1 acts on RBCs via pore formation. These results are compatible with fluorescence microscopy images of the ghosts. The peptides interact with eukaryotic membranes following similar mechanisms that take place in bacteria, highlighting the importance of hydrophobicity when determining such interactions. Our work bridges model membranes and in vitro studies and provides an analytical toolbox to assess drug toxicity toward eukaryotic cells.  相似文献   

10.
Aurein 1.2 is an antimicrobial and anticancer peptide isolated from an Australian frog. To improve our understanding of the mechanism of action, two series of peptides were designed. The first series includes the N-terminal membrane anchor of bacterial glucose-specific enzyme IIA, aurein 1.2, and a newly identified aurein 1.2 analog from human LL-37 (LLAA). The order of antibacterial activity is LLAA>aurein 1.2>the membrane anchor (inactive). The structure of LLAA in detergent micelles was determined by (1)H NMR spectroscopy, including structural refinement by natural abundance (13)C(alpha), (13)C(beta), and (15)N chemical shifts. The hydrophobic surface area of the 3D structure is related to the retention time of the peptide on a reverse-phase HPLC column. The higher activity of LLAA compared to aurein 1.2 was attributed to additional cationic residues that enhance the membrane perturbation potential. The second peptide series was created by changing the C-terminal phenylalanine (F13) of aurein 1.2 to either phenylglycine or tryptophan. A closer or further location of the aromatic rings to the peptide backbone in the mutants relative to F13 is proposed to cause a drop in activity. Phenylglycine with unique chemical shifts may be a useful NMR probe for structure-activity relationship studies of antimicrobial peptides. To facilitate potential future use for NMR studies, random-coil chemical shifts for phenylglycine (X) were measured using the synthetic peptide GGXGG. Aromatic rings of phenylalanines in all the peptides penetrated 2-5 A below the lipid head group and are essential for membrane targeting as illustrated by intermolecular peptide-lipid NOE patterns.  相似文献   

11.
Enterococcus faecalis is the dominant pathogen for persistent periapical periodontitis. The chlorhexidine (CHX) is used as conversional irrigation agents during endodontic root canal therapy. It was reported that the antisense walR RNA (ASwalR) suppressed the biofilm organization. The aim of this study was to investigate the antimicrobial effects of novel graphene oxide (GO)-polyethylenimine (PEI)-based antisense walR (ASwalR) on the inhibition of E. faecalis biofilm and its susceptibility to chlorhexidine. The recombinant ASwalR plasmids were modified with a gene encoding enhanced green fluorescent protein (ASwalR-eGFP) as a reporter gene so that the transformation efficiency could be evaluated by the fluorescence intensity. The GO-PEI-based ASwalR vector transformation strategy was developed to be transformed into E. faecalis and to over-produce ASwalR in biofilms. Colony forming units (CFU) and confocal laser scanning microscopy were used to investigate whether the antibacterial properties of antisense walR interference strategy sensitize E. faecalis biofilm to the CHX. The results indicated that overexpression of ASwalR by GO-PEI-based transformation strategy could inhibit biofilm formation, decrease the EPS synthesis and increase the susceptibility of E. faecalis biofilms to CHX. Our reports demonstrated that antisense walR RNA will be a supplementary strategy in treating E. faecalis with irrigation agents.  相似文献   

12.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into alpha-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D(2)O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1>aurein 1.2>citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1>aurein 1.2 congruent with citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

13.
14.
Previous studies on aurein 2.2 and 2.3 in DMPC/DMPG and POPC/POPG membranes have shown that bilayer thickness and phosphatidylglycerol content have a significant impact on the interaction of these peptides with membrane bilayers. Further examination with the DiSC35 assay has indicated that aurein 2.2 induces greater membrane leakage than aurein 2.3 in Staphylococcus aureus C622. The only difference between these peptides is a Leu to Ile mutation at residue 13. To better understand the importance of this residue, the structure and activity of the L13A, L13F, and L13V mutants were investigated. In addition, we investigated a number of peptides with truncations at the C-terminus to determine whether the C-terminus, which contains residue 13, is crucial for antimicrobial activity. Solution circular dichroism results demonstrated that the L13F mutation and the truncation of the C-terminus by six residues resulted in decreased helical content, whereas the L13A or L13V mutation and the truncation of the C-terminus by three residues showed little to no effect on the structure. Oriented circular dichroism results demonstrated that only an extensive C-terminal truncation reduced the ability of the peptide to insert into lipid bilayers. 31P NMR spectroscopy showed that all peptides disorder the headgroups. The implications of these results in terms of antimicrobial activity and the ability of these peptides to induce leakage in S. aureus are discussed. The results suggest that the presence of the 13th residue in aurein 2.2 is important for structure and activity, but the exact nature of residue 13 is less important as long as it is a hydrophobic residue.  相似文献   

15.
Summary The equilibrium binding mechanism and kinetics of binding of diS–C3-(5) (3,3-dipropylthiodicarbocyanine iodide) to rabbit renal brush-border membrane vesicles (BBMV) were examined using steady-state and time-resolved fluorescence, and fluorescence stopped-flow methods. In aqueous solution, diS–C3-(5) exists as a monomer at concentrations <5 m with fluorescence emission peak at 670 nm (excitation 622 nm), anisotropyr=0.102, and lifetime =1.2 nsec (23°C). Upon addition of increasing BBMV (voltage clamped to 0 mV using K+/valinomycin), the 670 nm emission peak decreases, corresponding to formation of a nonfluorescent membrane dimer, and subsequently a new emission peak at 695 nm increases, corresponding to membrane monomer. Dynamic depolarization studies show that aqueous diS–C3-(5) rotation is unhindered with a rotational rateR=0.57 nsec–1 while membrane monomer is hindered with steady-state anisotropyr=0.190, lifetime =2.1 nsec,R=0.58 nsec–1 and limiting anisotropyr =0.11. Based on equilibrium fluorescence titrations, the membrane monomer-dimer (M-D) dissociation constant,K d=[M]2/[D][BBMV], is 0.0013, where BBMV is expressed as membrane phospholipid concentration. Three distinct kinetic processes are identified by stopped-flow experiments in which BBMV are mixed with diS–C3-(5). There is rapid binding of diS–C3-(5) to the membrane to form bound monomer with a 6-msec exponential time constant. The membrane monomer at the membrane outer surface then aggregates to form bound dimer at the outer surface with a concentration independent time constant of 30 msec. The overall dimerization reaction probably consists of a rate-limiting reorientation process (30 msec) followed by a rapid dimerization which occurs on a nanosecond time scale. Finally, there is a 0.8 to 1 sec translocation of membrane dimer between symmetric sites at the inner and outer membrane surfaces. The translocation reaction is the step which is probably sensitive to changes in transmembrane electrical potential.  相似文献   

16.
The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.  相似文献   

17.
Polyamines such as spermidine and spermine are primordial polycations that are ubiquitously present in the three domains of life. We have found that Gram‐positive bacteria Staphylococcus aureus and Enterococcus faecalis have lost either all or most polyamine biosynthetic genes, respectively, and are devoid of any polyamine when grown in polyamine‐free media. In contrast to bacteria such as Pseudomonas aeruginosa, Campylobacter jejuni and Agrobacterium tumefaciens, which absolutely require polyamines for growth, S. aureus and E. faecalis grow normally over multiple subcultures in the absence of polyamines. Furthermore, S. aureus and E. faecalis form biofilms normally without polyamines, and exogenous polyamines do not stimulate growth or biofilm formation. High levels of external polyamines, including norspermidine, eventually inhibit biofilm formation through inhibition of planktonic growth. We show that spermidine/spermine N‐acetyltransferase (SSAT) homologues encoded by S. aureus USA300 and E. faecalis acetylate spermidine, spermine and norspermidine, that spermine is the more preferred substrate, and that E. faecalis SSAT is almost as efficient as human SSAT with spermine as substrate. The polyamine auxotrophy, polyamine‐independent growth and biofilm formation, and presence of functional polyamine N‐acetyltransferases in S. aureus and E. faecalis represent a new paradigm for bacterial polyamine biology.  相似文献   

18.
In this work, we investigated how activity and oligomeric state are related in a purified GH1 β‐glucosidase from Spodoptera frugiperda (Sfβgly). Gel filtration chromatography coupled to a multiple angle light scattering detector allowed separation of the homodimer and monomer states and determination of the dimer dissociation constant (KD), which was in the micromolar range. Enzyme kinetic parameters showed that the dimer is on average 2.5‐fold more active. Later, we evaluated the kinetics of homodimerization, scanning the changes in the Sfβgly intrinsic fluorescence over time when the dimer dissociates into the monomer after a large dilution. We described how the rate constant of monomerization (koff) is affected by temperature, revealing the enthalpic and entropic contributions to the process. We also evaluated how the rate constant (kobs) by which equilibrium is reached after dimer dilution behaves when varying the initial Sfβgly concentration. These data indicated that Sfβgly dimerizes through the conformational selection mechanism, in which the monomer undergoes a conformational exchange and then binds to a similar monomer, forming a more active homodimer. Finally, we noted that conformational selection reports and experiments usually rely on a ligand whose concentration is in excess, but for homodimerization, this approach does not hold. Hence, since our approach overcomes this limitation, this study not only is a new contribution to the comprehension of GH1 β‐glucosidases, but it can also help to elucidate protein interaction pathways.  相似文献   

19.
Skin secretions of numerous Australian tree frogs contain antimicrobial peptides that form part of the host defense mechanism against bacterial infection. The mode of action of these antibiotics is thought to be lysis of infectious organisms via cell membrane disruption, on the basis of vesicle-encapsulated dye leakage data [Ambroggio et al. (2005) Biophys. J. 89, 1874-1881]. A detailed understanding of the interaction of these peptides with bacterial membranes at a molecular level, however, is critical to their development as novel antibacterial therapeutics. We focus on four of these peptides, aurein 1.2, citropin 1.1, maculatin 1.1, and caerin 1.1, which exist as random coil in aqueous solution but have alpha-helical secondary structure in membrane mimetic environments. In our earlier solid-state NMR studies, only neutral bilayers of the zwitterionic phospholipid dimyristoylphosphatidylcholine (DMPC) were used. Deuterated DMPC ( d 54-DMPC) was used to probe the effect of the peptides on the order of the lipid acyl chains and dynamics of the phospholipid headgroups by deuterium and (31)P NMR, respectively. In this report we demonstrate several important differences when anionic phospholipid is included in model membranes. Peptide-membrane interactions were characterized using surface plasmon resonance (SPR) spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Changes in phospholipid motions and membrane binding information provided additional insight into the action of these antimicrobial peptides. While this set of peptides has significant C- and N-terminal sequence homology, they vary in their mode of membrane interaction. The longer peptides caerin and maculatin exhibited properties that were consistent with transmembrane insertion while citropin and aurein demonstrated membrane disruptive mechanisms. Moreover, aurein was unique with greater perturbation of neutral versus anionic membranes. The results are consistent with a surface interaction for aurein 1.2 and pore formation rather than membrane lysis by the longer peptides.  相似文献   

20.
The structure and membrane interaction of the antimicrobial peptide aurein 2.2 (GLFDIVKKVVGALGSL-CONH(2)), aurein 2.3 (GLFDIVKKVVGAIGSL-CONH(2)), both from Litoria aurea, and a carboxy C-terminal analog of aurein 2.3 (GLFDIVKKVVGAIGSL-COOH) were studied to determine which features of this class of peptides are key to activity. Circular dichroism and solution-state NMR data indicate that all three peptides adopt an alpha-helical structure in the presence of trifluoroethanol or lipids such as 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a 1:1 mixture of DMPC and 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG). Oriented circular dichroism was used to determine the orientation of the peptides in lipid bilayers over a range of concentrations (peptide/lipid molar ratios (P/L) = 1:15-1:120) in DMPC and 1:1 DMPC/DMPG, in the liquid crystalline state. The results demonstrate that in DMPC all three peptides are surface adsorbed over a range of low peptide concentrations but insert into the bilayers at high peptide concentrations. This finding is corroborated by (31)P-solid-state NMR data of the three peptides in DMPC, which shows that at high peptide concentrations the peptides perturb the membrane. Oriented circular dichroism data of the aurein peptides in 1:1 DMPC/DMPG, on the other hand, show that the peptides with amidated C-termini readily insert into the membrane bilayers over the concentration range studied (P/L = 1:15-1:120), whereas the aurein 2.3 peptide with a carboxy C-terminus inserts at a threshold concentration of P/L* between 1:80 and 1:120. Overall, the data presented here suggest that all three peptides studied interact with phosphatidylcholine membranes in a manner which is similar to aurein 1.2 and citropin 1.1, as reported in the literature, with no correlation to the reported activity. On the other hand, both aurein 2.2 and aurein 2.3 behave similarly in phosphatidylcholine/phosphatidylglycerol (PC/PG) membranes, whereas aurein 2.3-COOH inserts less readily. As this does not correlate with reported activities, minimal inhibitory concentrations of the three peptides against Staphylococcus aureus (strain C622, ATCC 25923) and Staphylococcus epidermidis (strain C621--clinical isolate) were determined. The correlation between structure, membrane interaction, and activity are discussed in light of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号