首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the purpose of molecular dynamics simulations of large biopolymers we have developed a new method to accelerate the calculation of long-range pair interactions (e.g. Coulomb interaction). The algorithm introduces distance classes to schedule updates of non-bonding interactions and to avoid unnecessary computations of interactions between particles which are far apart. To minimize the error caused by the updating schedule, the Verlet integration scheme has been modified. The results of the method are compared to those of other approximation schemes as well as to results obtained by numerical integration without approximation. For simulation of a protein with 12 637 atoms our approximation scheme yields a reduction of computer time by a factor of seven. The approximation suggested can be implemented on sequential as well as on parallel computers. We describe an implementation on a (Transputer-based) MIMD machine with a systolic ring architecture.  相似文献   

2.
NAExplor is a software tool for converting coordinates files between the software packages AMBER, CHARMM, and XPLOR. In addition, it manages the conversion of NMR-derived distance restraints information from the MARDIGRAS program into the appropriate file formats used for input in AMBER, CHARMM, and XPLOR. Analyses of H-H distances in nucleic acid structures and calculations of torsion angles for nucleic acid backbone and riboses are also possible.  相似文献   

3.
Abstract

Systolic loop programs have been shown to be very efficient for molecular dynamics simulations of liquid systems on distributed memory parallel computers. The original methods address the case where the number of molecules simulated exceeds the number of processors used. Simulations of large flexible molecules often do not meet this condition, requiring the three- and four-body terms used to model chemical bonds within a molecule to be distributed over several processors. This paper discusses how the systolic loop methods may be generalised to accommodate such systems, and describes the implementation of a computer program for simulation of protein dynamics. Performance figures are given for this program running typical simulations on a Meiko Computing Surface using different number of processors.  相似文献   

4.
5.
We have no standard computer algorithm for the reconstruction of parental genotypes from the data generated by molecular studies of progeny arrays. Here I present a computer program that uses the multilocus genotypes of parents and offspring to reconstruct the genotypes of unknown parents contributing gametes to a progeny array for which one parent is known a priori. A second program performs simulations to assess the reliability of the algorithm under various scenarios. These programs will aid scientists engaged in parentage analyses, particularly in species with large clutches.  相似文献   

6.
7.
A new program package (COSMOS90) for molecular dynamics simulations was developed to simulate large molecular systems consisting of more than tens of thousands of atoms without the truncation of long-range coulomb interactions. This program package was based on a new approximation scheme (PPPC) for calculating efficiently the coulomb interactions without sacrificing accuracy. In this approximation scheme, the group of charges at a long distance from each atom was represented by a total charge and total dipole moment of the group. In order to assess the accuracy of PPPC and the ability of COSMOS90, molecular dynamics simulations were carried out for a large system consisting of 16108 atoms (human lysozyme in water) for 50 ps using this program package. The coulomb energy per solute atom was calculated with only five percent of the error found in the 10 Å cut-off approximation (about 0.9 kcal/mol versus 18 kcal/mol, respectively). The molecular dynamics simulations using COSMOS90 require no more CPU time than the simulations based on the 10 Å cut-off approximation of the conventional programs for macromolecular simulations.  相似文献   

8.
Free energy calculations for protein-ligand dissociation have been tested and validated for small ligands (50 atoms or less), but there has been a paucity of studies for larger, peptide-size ligands due to computational limitations. Previously we have studied the energetics of dissociation in a potassium channel-charybdotoxin complex by using umbrella sampling molecular-dynamics simulations, and established the need for carefully chosen coordinates and restraints to maintain the physiological ligand conformation. Here we address the ligand integrity problem further by constructing additional potential of mean forces for dissociation of charybdotoxin using restraints. We show that the large discrepancies in binding free energy arising from simulation artifacts can be avoided by using appropriate restraints on the ligand, which enables determination of the binding free energy within the chemical accuracy. We make several suggestions for optimal choices of harmonic potential parameters and restraints to be used in binding studies of large ligands.  相似文献   

9.
Parallel BLAST on split databases   总被引:1,自引:0,他引:1  
SUMMARY: BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. AVAILABILITY: Source code is available from ftp://saf.bio.caltech.edu/  相似文献   

10.
Massive DNA sequencing has significantly increased the amount of data available for population genetics and molecular ecology studies. However, the parallel computation of simple statistics within and between populations from large panels of polymorphic sites is not yet available, making the exploratory analyses of a set or subset of data a very laborious task. Here, we present 4P (parallel processing of polymorphism panels), a stand‐alone software program for the rapid computation of genetic variation statistics (including the joint frequency spectrum) from millions of DNA variants in multiple individuals and multiple populations. It handles a standard input file format commonly used to store DNA variation from empirical or simulation experiments. The computational performance of 4P was evaluated using large SNP (single nucleotide polymorphism) datasets from human genomes or obtained by simulations. 4P was faster or much faster than other comparable programs, and the impact of parallel computing using multicore computers or servers was evident. 4P is a useful tool for biologists who need a simple and rapid computer program to run exploratory population genetics analyses in large panels of genomic data. It is also particularly suitable to analyze multiple data sets produced in simulation studies. Unix, Windows, and MacOs versions are provided, as well as the source code for easier pipeline implementations.  相似文献   

11.
Computer simulations are useful tools to optimize marker-assisted breeding programs. The objective of our study was to investigate the closeness of computer simulations of the recurrent parent genome recovery with experimental data obtained in two marker-assisted backcrossing programs in rice (Orzya sativa L.). We simulated the breeding programs as they were practically carried out. In the simulations we estimated the frequency distributions of the recurrent parent genome proportion in the backcross populations. The simulated distributions were in good agreement with those obtained practically. The simulation results were also observed to be robust with respect to the choice of the mapping function and the accuracy of the linkage map. We conclude that computer simulations are a useful tool for pre-experiment estimation of selection response in marker-assisted backcrossing. Vanessa Prigge and Hans Peter Maurer contributed equally to this work.  相似文献   

12.
We describe a set of IBM-compatible computer programs designed to selectively identify the potential sites for silent mutagenesis within a target DNA sequence. This program is based on a novel strategy of identifying amino acid motifs compatible with each restriction site (BioTechniques 12:382-384, 1991). The programs can be used to identify the suitability for the introduction of any 6-base nucleic acid sequences, such as restriction enzyme sites in cassette mutagenesis strategies. The Table program generates a table of multiple amino acid motifs for each restriction enzyme, obtained by translating each unique recognition sequence in all three reading frames. The Silmut program, which utilizes the features of Table, will further identify the presence of a match between any amino acid motif of each restriction enzyme and the input target sequence. Minor manipulations of the data base files will enable the individual researcher to identify the potential for introduction of any 6-base sequences by silent mutagenesis.  相似文献   

13.
ABSTRACT: BACKGROUND: The MapReduce framework enables a scalable processing and analyzing of large datasets by distributing the computational load on connected computer nodes, referred to as a cluster. In Bioinformatics, MapReduce has already been adopted to various case scenarios such as mapping next generation sequencing data to a reference genome, finding SNPs from short read data or matching strings in genotype files. Nevertheless, tasks like installing and maintaining MapReduce on a cluster system, importing data into its distributed file system or executing MapReduce programs require advanced knowledge in computer science and could thus prevent scientists from usage of currently available and useful software solutions. RESULTS: Here we present Cloudgene, a freely available platform to improve the usability of MapReduce programs in Bioinformatics by providing a graphical user interface for the execution, the import and export of data and the reproducibility of workflows on in-house (private clouds) and rented clusters (public clouds). The aim of Cloudgene is to build a standardized graphical execution environment for currently available and future MapReduce programs, which can all be integrated by using its plug-in interface. Since Cloudgene can be executed on private clusters, sensitive datasets can be kept in house at all time and data transfer times are therefore minimized. CONCLUSIONS: Our results show that MapReduce programs can be integrated into Cloudgene with little effort and without adding any computational overhead to existing programs. This platform gives developers the opportunity to focus on the actual implementation task and provides scientists a platform with the aim to hide the complexity of MapReduce. In addition to MapReduce programs, Cloudgene can also be used to launch predefined systems (e.g. Cloud BioLinux, RStudio) in public clouds. Currently, five different bioinformatic programs using MapReduce and two systems are integrated and have been successfully deployed. Cloudgene is freely available at http://cloudgene.uibk.ac.at.  相似文献   

14.
Experimental constraints associated with NMR structures are available from the Protein Data Bank (PDB) in the form of `Magnetic Resonance' (MR) files. These files contain multiple types of data concatenated without boundary markers and are difficult to use for further research. Reported here are the results of a project initiated to annotate, archive, and disseminate these data to the research community from a searchable resource in a uniform format. The MR files from a set of 1410 NMR structures were analyzed and their original constituent data blocks annotated as to data type using a semi-automated protocol. A new software program called Wattos was then used to parse and archive the data in a relational database. From the total number of MR file blocks annotated as constraints, it proved possible to parse 84% (3337/3975). The constraint lists that were parsed correspond to three data types (2511 distance, 788 dihedral angle, and 38 residual dipolar couplings lists) from the three most popular software packages used in NMR structure determination: XPLOR/CNS (2520 lists), DISCOVER (412 lists), and DYANA/DIANA (405 lists). These constraints were then mapped to a developmental version of the BioMagResBank (BMRB) data model. A total of 31 data types originating from 16 programs have been classified, with the NOE distance constraint being the most commonly observed. The results serve as a model for the development of standards for NMR constraint deposition in computer-readable form. The constraints are updated regularly and are available from the BMRB web site (http://www.bmrb.wisc.edu).  相似文献   

15.
Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nano-scale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail.  相似文献   

16.
We have carried out a very long (300 ps) molecular dynamics simulation of the protein myoglobin. This trajectory is approximately three times longer than the longest previous molecular dynamics simulation of a protein, and ten times longer than protein simulations of comparable size (1,423 atoms in our model). Here we report results from this long simulation concerning the average structure, the mean square fluctuations of atoms about the average structure, and the nuclear magnetic resonance order parameters for various groups in myoglobin. The results demonstrate that the average coordinates change very slowly during the simulation. The relative atomic mobilities are well described by the simulation. For both the mean square atomic fluctuations and the order parameters, however, there are significant quantitative differences when values calculated using shorter portions of the trajectory are compared with results obtained for the entire 300-ps simulation. The implications of this result for obtaining converged properties from protein molecular dynamics simulations for comparison with experiment are discussed.  相似文献   

17.
We have developed a software package named PEAS to facilitate analyses of large data sets of single nucleotide polymorphisms (SNPs) for population genetics and molecular phylogenetics studies. PEAS reads SNP data in various formats as input and is versatile in data formatting; using PEAS, it is easy to create input files for many popular packages, such as STRUCTURE, frappe, Arlequin, Haploview, LDhat, PLINK, EIGENSOFT, PHASE, fastPHASE, MEGA and PHYLIP. In addition, PEAS fills up several analysis gaps in currently available computer programs in population genetics and molecular phylogenetics. Notably, (i) It calculates genetic distance matrices with bootstrapping for both individuals and populations from genome-wide high-density SNP data, and the output can be streamlined to MEGA and PHYLIP programs for further processing; (ii) It calculates genetic distances from STRUCTURE output and generates MEGA file to reconstruct component trees; (iii) It provides tools to conduct haplotype sharing analysis for phylogenetic studies based on high-density SNP data. To our knowledge, these analyses are not available in any other computer program. PEAS for Windows is freely available for academic users from http://www.picb.ac.cn/~xushua/index.files/Download_PEAS.htm.  相似文献   

18.
Allan R Brasier 《BioTechniques》2002,32(1):100-2, 104, 106, 108-9
High-density oligonucleotide arrays are widely employed for detecting global changes in gene expression profiles of cells or tissues exposed to specific stimuli. Presented with large amounts of data, investigators can spend significant amounts of time analyzing and interpreting this array data. In our application of GeneChip arrays to analyze changes in gene expression in viral-infected epithelium, we have needed to develop additional computational tools that may be of utility to other investigators using this methodology. Here, I describe two executable programs to facilitate data extraction and multiple data point analysis. These programs run in a virtual DOS environment on Microsoft Windows 95/98/2K operating systems on a desktop PC. Both programs can be freely downloaded from the BioTechniques Software Library (www.BioTechniques.com). The first program, Retriever, extracts primary data from an array experiment contained in an Affymetrix textfile using user-inputted individual identification strings (e.g., the probe set identification numbers). With specific data retrieved for individual genes, hybridization profiles can be examined and data normalized. The second program, CompareTable, is used to facilitate comparison analysis of two experimental replicates. CompareTable compares two lists of genes, identifies common entries, extracts their data, and writes an output text file containing only those genes present in both of the experiments. The output files generated by these two programs can be opened and manipulated by any software application recognizing tab-delimited text files (e.g., Microsoft NotePad or Excel).  相似文献   

19.
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology.  相似文献   

20.
By equipping a standard Hilger-Watts stereo-photogrammetry viewer with transducers, sets of (X, Y, Z) coordinates corresponding to features within fracture surfaces can be obtained. Transducers mounted so as to monitor the the X and Y translations of the viewing tray, when incorporated with a third transducer to measure the rise and fall of the light spot used to measure apparent height changes, supply three voltage signals corresponding to the coordinates of any feature within the fracture surface. These signals are then processed through an analog/digital converter and the digitized signals stored on diskette on an ATT 6300 computer. The voltage files can then be converted to calibrated, normalized files of (X, Y, Z) coordinates using a menu-driven program. Inexpensive commercially available software is then incorporated to use this data to generate calibrated topographic maps. In this way, detailed contour maps, as well as carpet plots and line profiles, can be generated from any fracture surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号