首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional asymmetries in the rodent barrel cortex   总被引:3,自引:0,他引:3  
Neurophysiological and 2-deoxyglucose (2DG) studies of the rodent whisker barrel cortex have demonstrated asymmetries in its functional organization. To examine the possibility that the activity gradients observed in metabolic studies can be attributed to subtle rostral-caudal and dorsal-ventral asymmetries in electrophysiologically measured surround or cross-whisker inhibition, we compared 2DG results with predictions generated from quantitative single-cell receptive field data. Despite differences in the two experimental approaches, there is remarkable agreement between the findings. (1) The distribution of 2DG activity declines across the barrel cortex of the behaving animal from anteromedial barrels to posterolateral barrels, and is qualitatively and quantitatively similar to the values predicted from neurophysiology. (2) The strength of surround inhibition in barrel neurons predicts the twofold increase in activation of the C3 barrel following acute clipping of adjacent whiskers. And (3) within a cortical column, the decrease in metabolic activity associated with adjacent whisker stimulation is greatest in layer IV and least in the infragranular layers; this corresponds to the laminar distribution of inhibitory interactions observed electrophysiologically.  相似文献   

2.
Higher brain function in mammals primarily relies on complex yet sophisticated neuronal circuits in the neocortex. In early developmental stages, neocortical circuits are coarse. Mostly postnatally, the circuits are reorganized to establish mature precise connectivity, in an activity-dependent manner. These connections underlie adult brain function. The rodent somatosensory cortex (barrel cortex) contains a barrel map in layer 4 (L4) and has been considered an ideal model for the study of postnatal neuronal circuit formation since the first report of barrels in 1970. Recently, two-photon microscopy has been used for analyses of neuronal circuit formation in the mammalian brain during early postnatal development. These studies have further highlighted the mouse barrel cortex as an ideal model. In particular, the unique dendritic projection pattern of barrel cortex L4 spiny stellate neurons (barrel neurons) is key for the precise one-to-one functional relationship between whiskers and barrels and thus an important target of studies. In this article, I will review the morphological aspects of postnatal development of neocortical circuits revealed by recent two-photon in vivo imaging studies of the mouse barrel cortex and other related works. The focus of this review will be on barrel neuron dendritic refinement during neonatal development.  相似文献   

3.
Development of the central somatosensory system is profoundly modulated by the sensory periphery. Cauterization of facial whiskers alters the segregation pattern of barrels in rodents only during a few days just after birth (critical period). Although a molecular basis of the segregation of barrel neurons and the critical period for the anatomical plasticity observed in layer IV barrel neuron is not clear yet, the accumulating evidence suggests that neurotrophins modulate synaptic connections including central nervous system. In this study, we showed by in situ hybridization that mouse barrel side neurons express brain-derived neurotrophic factor (BDNF) mRNA and both catalytic and non-catalytic forms of trkB mRNA. Cautery of row C vibrissae on the right side of the face within 24 h after birth (post natal day 0, PND0) reduced the expression of BDNF and trkB mRNA from the division region between the contralateral row C barrels at PND7. The vibrissae in row A, C, and E were cauterized at PND0 followed by quantitative RT-PCR for BDNF and trkB mRNA with total RNA isolated from the barrel region at PND7. The result showed that BDNF, but not trkB, mRNA was increased several-fold in the contralateral barrel region. These data suggest that the expression of BDNF mRNA is differentially regulated between injured barrels and actively innervated barrels. The differential expression of the mRNA encoding neurotrophins and their receptors may be important in regulating the injury-dependent re-segregation of barrels.  相似文献   

4.
Sensory deprivation during a critical period reduces spine motility and disrupts receptive field structure of layer 2/3 neurons in rat barrel cortex. To determine the locus of plasticity, we used laser scanning photostimulation, allowing us to rapidly map intracortical synaptic connectivity in brain slices. Layer 2/3 neurons differed in their spatial distributions of presynaptic partners: neurons directly above barrels received, on average, significantly more layer 4 input than those above the septa separating barrels. Complementary connectivity was found in deprived cortex: neurons above septa were now strongly coupled to septal regions, while connectivity between barrel regions and layer 2/3 was reduced. These results reveal competitive interactions between barrel and septal circuits in the establishment of precise intracortical circuits.  相似文献   

5.
Extracellular unit recordings were made at various depths within SmI barrel cortex of immobilized, sedated rats, in the presence and absence of titrated amounts of the GABAA receptor antagonist bicuculline methiodide (BMI). Principal and adjacent whiskers were moved singly, or in paired combination in a condition-test paradigm, to assess excitatory and inhibitory receptive field (RF) characteristics. Neurons were classified as regular- or fast-spike units, and divided into three laminar groups: supragranular, granular (barrel), and infragranular. BMI increased response magnitude and duration, but did not affect response latencies. The excitatory RFs of barrel units, which are the most tightly focused on the principal whisker, were the most greatly defocused by BMI; infragranular units were least affected. All three layers had approximately equal amounts of adjacent whisker-evoked, surround inhibition, but BMI counteracted this inhibition substantially in barrel units and less so in infragranular units. The effects of BMI were most consistent in the barrel; more heterogeneity was found in the non-granular layers. These lamina-dependent effects of BMI are consistent with the idea that between-whisker inhibition is generated mostly within individual layer IV barrels as a result of the rapid engagement of strong, local inhibitory circuitry, and is subsequently embedded in layer IV's output to non-layer IV neurons. The latter's surround inhibition is thus relatively resistant to antagonism by locally applied BMI. The greater heterogeneity of non-granular units in terms of RF properties and the effects of BMI is consistent with other findings demonstrating that neighboring neurons in these layers may participate in different local circuits.  相似文献   

6.
Plasticity was induced in the barrel cortex of adolescent rats by depriving every second vibrissa on the contralateral vibrissa pad.This produced a chessboard pattern of barrels in the cortex where each barrel receiving its principal input from a spared vibrissa was surrounded by barrels for which the principal vibrissa had been deprived and conversely, each barrel receiving its principal input from a deprived vibrissa was surrounded by barrels for which the principal vibrissa had been spared. After 7 days' deprivation, responses to the regrown vibrissae were depressed in layers II/III (49% of control levels) and IV (60%). Depression was far greater than that seen with "all vibrissa" deprivation, suggesting that activity in the spared vibrissae accentuated the depression of the deprived vibrissae. Depression was not due to subcortical changes as thalamic Ventral Posterior Medial (VPM) responses to deprived vibrissa were unchanged. The short latency responses in layer IV (5-7 ms) were unaffected by deprivation, but the number of cells responding at intermediate latencies (8-13 ms) was markedly reduced (to 66% of control). Potentiation of the spared vibrissa response was substantial in the near side of the neighbouring barrel (2.2-fold increase in layers II/III, 2.9-fold in layer IV) but had not spread to the far side after 7 days' deprivation. Sparing multiple vibrissae may increase the rate of potentiation since 7 days is insufficient time for potentiation in single vibrissa spared animals. Potentiation was not due to subcortical changes as thalamic VPm responses to the spared vibrissa were normal. However, in the spared barrel the response latency decreased by 1-2 ms. Only the cells responding at short latency exhibited potentiated responses (39% increase) suggesting that some thalamocortical plasticity is still possible at P28-35. These results show that chessboard pattern deprivation is capable of inducing substantial plasticity over a wide area of barrel cortex. All the major forms of plasticity seen with other vibrissa deprivation patterns were present, although no other single deprivation pattern studied so far causes the complete repertoire seen with chessboard deprivation.  相似文献   

7.
Cortical maps, consisting of orderly arrangements of functional columns, are a hallmark of the organization of the cerebral cortex. However, the microorganization of cortical maps at the level of single neurons is not known, mainly because of the limitations of available mapping techniques. Here, we used bulk loading of Ca2+ indicators combined with two-photon microscopy to image the activity of multiple single neurons in layer (L) 2/3 of the mouse barrel cortex in vivo. We developed methods that reliably detect single action potentials in approximately half of the imaged neurons in L2/3. This allowed us to measure the spiking probability following whisker deflection and thus map the whisker selectivity for multiple neurons with known spatial relationships. At the level of neuronal populations, the whisker map varied smoothly across the surface of the cortex, within and between the barrels. However, the whisker selectivity of individual neurons recorded simultaneously differed greatly, even for nearest neighbors. Trial-to-trial correlations between pairs of neurons were high over distances spanning multiple cortical columns. Our data suggest that the response properties of individual neurons are shaped by highly specific subcolumnar circuits and the momentary intrinsic state of the neocortex.  相似文献   

8.
Short corticocortical connections between specialized groups of neurons (so-called barrels) were studied in the somatosensory cortex. After microinjections of horseradish peroxidase into a definite "barrel" labeled neurons were found in nearby groups within a radius of up to 400 µ. Labeled neurons were located chiefly in cortical layers V and III; 90% of them were pyramidal cells. Intracortical connection of labeled neurons were 1.6 times more numerous than thalamocortical connections. It is postulated that connections between neighboring cortical neuron groups are effected through their output cells, i.e., through pyramidal neurons of layers V and III.  相似文献   

9.
Chen XM  Qiao ZM  Gao SK  Hong B 《生理学报》2007,59(6):851-857
神经元网络可塑性是大脑学习和记忆功能的基础,可塑性的变化也是某些脑功能疾病的成因。研究大脑皮层可塑性不仅可以为认识可塑性机制提供基本方法,也可对自然衰老过程和神经退行性疾病的病理过程进行观测,进而可以为评价抗衰老药物和治疗神经退行性疾病提供新方法。本文基于经典的大鼠胡须配对模型建立了一套实验方案,通过在体细胞外记录实验的数据分析,比较修剪胡须后相同时间内神经元感受野不对称变化程度的差异,衡量不同生理条件下大鼠体感皮层神经元网络可塑性。本文以中年和青年大鼠体感皮层神经元网络可塑性比较为例,详细介绍了实验方法中的关键技术和操作,如皮层D2功能柱的定位和D2功能柱内不同层神经元的定位等,结果和我室以前相关研究证明了此实验方案的可行性。  相似文献   

10.
We tested the hypothesis that glutamate receptor mediated activity is required for the postnatal development of intracortical connections in layers II/III of rodent barrel cortex. To block glutamate receptors, a slow release polymer (elvax) loaded with a glutamate receptor antagonist (D-AP5) was targeted subdurally over the future rat barrel cortex on P0 (day of birth). On P14-16 biotinylated dextran amine (BDA) was injected under the elvax into all layers to label neurons retrogradely. A BDA injection was made stereotactically at the mirror site of the untreated hemisphere of each animal. The animals survived to P22-24. Injection sites and retrogradely labeled cell bodies were identified in tangential sections in relation to the barrel map. D-AP5 treated and untreated hemispheres were matched according to the location of the injection site in the barrel map. Glutamate receptor blockade did not prevent the growth of intrinsic projections, but altered their organization. The normal row-like asymmetry of connections in untreated hemispheres was lacking in the D-AP5 treated cortex (ANOVA, p=0.02). Cortical activity mediated through glutamate receptors contributes to the correct development of connections between barrel columns in layers II/III.  相似文献   

11.
We tested the hypothesis that glutamate receptor mediated activity is required for the postnatal development of intracortical connections in layers II/III of rodent barrel cortex. To block glutamate receptors, a slow release polymer (elvax) loaded with a glutamate receptor antagonist (D-AP5) was targeted subdurally over the future rat barrel cortex on P0 (day of birth). On P14-16 biotinylated dextran amine (BDA) was injected under the elvax into all layers to label neurons retrogradely. A BDA injection was made stereotactically at the mirror site of the untreated hemisphere of each animal. The animals survived to P22-24. Injection sites and retrogradely labeled cell bodies were identified in tangential sections in relation to the barrel map. D-AP5 treated and untreated hemispheres were matched according to the location of the injection site in the barrel map. Glutamate receptor blockade did not prevent the growth of intrinsic projections, but altered their organization. The normal row-like asymmetry of connections in untreated hemispheres was lacking in the D-AP5 treated cortex (ANOVA, p =0.02). Cortical activity mediated through glutamate receptors contributes to the correct development of connections between barrel columns in layers II/III.  相似文献   

12.
Mice lacking the growth-associated protein GAP-43 (KO) show disrupted cortical topography and no barrels. Whisker-related patterns of cells are normal in the KO brainstem trigeminal complex (BSTC), while the pattern in KO ventrobasal thalamus (VB) is somewhat compromised. To better understand the basis for VB and cortical abnormalities, we used small placements of DiI to trace axonal projections between BSTC, VB, and barrel cortex in wildtype (WT) and GAP-43 KO mice. The trigeminothalamic (TT) pathway consists of axons from cells in the Nucleus Prinicipalis that project to the contralateral VB thalamus. DiI-labeled KO TT axons crossed the midline from BSTC and projected to contralateral VB normally, consistent with normal BSTC cytoarchitecture. By contrast, the KO thalamocortical axons (TCA) projection was highly abnormal. KO TCAs showed delays of 1-2 days in initial ingrowth to cortex. Postnatally, KO TCAs showed multiple pathfinding errors near intermediate targets, and were abnormally fasciculated within the internal capsule (IC). Interestingly, most individually labeled KO TCAs terminated in deep layers instead of in layer IV as in WT. This misprojection is consistent with birthdating analysis in KO mice, which revealed that neurons normally destined for layer IV remain in deep cortical layers. Early outgrowth of KO corticofugal (CF) axons was similar for both genotypes. However, at P7 KO CF fibers remained bundled as they entered the IC, and exhibited few terminal branches in VB. Thus, the establishment of axonal projections between thalamus and cortex are disrupted in GAP-43 KO mice.  相似文献   

13.
Activity-dependent plasticity in rodent whisker barrel cortex was examined by means of high-resolution 2-deoxyglucose (2-DG) with immunohistochemical double labeling. Hamsters with all but one, two, or four follicles ablated on postnatal day 7 received 2-DG injections as adults. Autoradiograms of follicle-ablated animals showed heavy activation of the entire barrel field during normal behavior, despite the missing whiskers. The intensity of 2-DG labeling was significantly reduced if the whiskers spared after follicle ablation were trimmed prior to the 2-DG injection, demonstrating that the widespread activation was driven by the spared whiskers. This widespread metabolic activation of the adult barrel field after neonatal follicle ablation was in sharp contrast to the somatotopically appropriate 2-DG labeling in barrel fields of normal adults subject to acute trimming of most whiskers, but was similar to that seen in normal adult animals with all whiskers intact. The results demonstrate large-scale plasticity of barrel circuitry following neonatal sensory deprivation, and provide a powerful functional anatomical setting to investigate underlying mechanisms  相似文献   

14.
Corticothalamic (CT) feedback plays an important role in regulating the sensory information that the cortex receives. Within the somatosensory cortex layer VI originates the feedback to the ventral posterior medial (VPM) nucleus of the thalamus, which in turn receives sensory information from the contralateral whiskers. We examined the physiology and morphology of CT neurons in rat somatosensory cortex, focusing on the physiological characteristics of the monosynaptic inputs that they receive from the thalamus. To identify CT neurons, rhodamine microspheres were injected into VPM and allowed to retrogradely transport to the soma of CT neurons. Thalamocortical slices were prepared at least 3 days post injection. Whole-cell recordings from labeled CT cells in layer VI demonstrated that they are regular spiking neurons and exhibit little spike frequency adaption. Two anatomical classes were identified based on their apical dendrites that either terminated by layer V (compact cells) or layer IV (elaborate cells). Thalamic inputs onto identified CT-VPM neurons demonstrated paired pulse depression over a wide frequency range (2–20?Hz). Stimulus trains also resulted in significant synaptic depression above 10?Hz. Our results suggest that thalamic inputs differentially impact CT-VPM neurons in layer VI. This characteristic may allow them to differentiate a wide range of stimulation frequencies which in turn further tune the feedback signals to the thalamus.  相似文献   

15.
Electrolytic destruction of whisker follicles in mice on the day of birth has been found to cause degeneration in the sensory nerve fibres supplying the follicles. The severity of the degeneration has been assessed in animals between 2 and 20 days old by counting the total number of myelinated fibres in the maxillary nerves on both normal and lesioned sides. The degeneration is apparent after 2 days and by 20 days the nerve on the lesioned side contains only 38% of the normal fibre content. This degeneration has also been shown to involve the trigeminal root, central to the ganglion. In addition, the lesioning procedure modifies the terminations of thalamocortical fibres in the barrel region of the sensory cortex. These terminations are normally in clusters, each corresponding to a barrel, but, after lesioning the follicles, the terminals appear to be evenly distributed in layer IV and cortical barrel structures no longer develop. In postnatal mice, electrolytic destruction of whisker follicles had less effect upon maxillary nerve fibres and cortical barrels. The number of myelinated axons surviving until day 20 increased progressively with later lesioning to reach nearly 80% of the control level when lesions were made on day 10. Cortical barrels became secure earlier than the maxillary nerve, for a normal number of cortical barrels was present at day 12 when follicles were destroyed on day 4. The implications of these results for the formation of cortical barrels is discussed.  相似文献   

16.
Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.  相似文献   

17.
Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.  相似文献   

18.
Although a highly organized system of reciprocal projections exists between the cerebral cortex and the thalamus, the relationship of the thalamocortical projections to functional activity remains unclear. This study attempts to identify the correlation between thalamic relay cells and functional activity evoked in the ventroposterior nucleus (VP) of cynomolgus and squirrel monkeys. Wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) was iontophoretically injected into physiologically determined sites in the somatosensory cortex, resulting in retrogradely labeled cells and anterogradely labeled terminals in corresponding somatosensory thalamic regions. In the same animals, 2-deoxyglucose (2DG) experiments were carried out 2 days later, using the somatic stimuli identified as best exciting the cortical neurons. Stimulation to the limbs produced crescent-shaped clusters of metabolic label arranged in a somatotopically organized fashion in the ventral posterior lateral nucleus (VPL). Following WGA:HRP injections into area 3b, the stimulus-evoked 2DG label was colocalized with the retrograde and anterograde tracer. This finding suggests that the location of stimulus-evoked metabolic activity can be predicted by the presence of transported WGA:HRP clusters.  相似文献   

19.
Distribution maps of cortical potentials evoked by mechanical stimulation of different number of contralateral vibrissae were studied. It was found that stimulation of all the contralateral vibrissae led to more extensive activation than the barrel field in the somatosensory cortex. The activation was most widespread when all the vibrissae were synchronously deflected. With reduction of the number of synchronously stimulated whiskers the activated cortical area did not decrease in parallel. Deflection of only a few whiskers activated significantly smaller cortical areas.  相似文献   

20.
A new approach to the study of glucose phosphorylation in brain slices is described. It is based on timed incubation with nonradioactive 2-deoxyglucose (DG), after which the tissue levels of DG and 2-deoxyglucose-6-phosphate (DG6P) are measured separately with sensitive enzymatic methods applied to specific small subregions. The smallest samples had dry weights of approximately 0.5 microgram. Direct measurements in different regions of hippocampal slices showed that within 6 min after exposure to DG, the ratios of DG to glucose in the tissue were almost the same as in the incubation medium, which simplifies the calculation of glucose phosphorylation rates and increases their reliability. Data are given for ATP, phosphocreatine, sucrose space, and K+ in specific subregions of the slices. DG6P accumulation proceeded at a constant rate for at least 10 min, even when stimulated by 10 mM glutamate in the medium. The calculated control rate of glucose phosphorylation was 2 mmol/kg (dry weight)/min. In the presence of 10 mM glutamate it was twice as great. The response to 10 mM glutamate of different regions of the slice was not uniform, ranging from 164% of control values in the molecular layer of CA1 to 256% in the stratum radiatum of CA1. There was a profound fall in phosphocreatine levels (75%) in response to 10 mM glutamate despite a 2.4-fold increase in glucose phosphorylation. Even in the presence of 1 mM glutamate, the increase in glucose phosphorylation (50%) was not great enough to prevent a significant drop in phosphocreatine content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号