首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nagel R  Ares M 《RNA (New York, N.Y.)》2000,6(8):1142-1156
Rnt1p is an RNase III homolog from budding yeast, required for processing snRNAs, snoRNAs, and rRNA. Numerous Rnt1p RNA substrates share potential to form a duplex structure with a terminal four-base loop with the sequence AGNN. Using a synthetic RNA modeled after the 25S rRNA 3' ETS cleavage site we find that the AGNN loop is an important determinant of substrate selectivity. When this loop sequence is altered, the rate of Rnt1p cleavage is reduced. The reduction in cleavage rate can be attributed to reduced binding of the mutant substrate as measured by a gel-shift assay. Deletion of the nonconserved N-terminal domain of Rnt1p does not affect cleavage site choice or the ability of the enzyme to distinguish substrates that contain the AGNN loop, indicating that this region is not required for selective cleavage. Strikingly, a recombinant fragment of Rnt1p containing little more than the dsRBD is able to discriminate between wild-type and mutant loop sequences in a binding assay. We propose that a major determinant of AGNN loop recognition by Rnt1p is present in its dsRBD.  相似文献   

2.
Meldal M 《Biopolymers》2002,66(2):93-100
Fluorescent quenched substrate libraries are a very powerful tool for investigation of protease activity and specificity. Particularly, libraries where the fluorescent resonance energy transfer (FRET) pair is 3-nitrotyrosine and 2-amino-benzamide are easy to prepare by split and combine synthesis to yield a one-bead one-compound library format. The solid support is critical for the successful hydrolysis of the resin-bound substrates. For this purpose, a range of highly porous poly(ethylene glycol) (PEG)-based resins have been developed. Active substrates yield highly fluorescent beads and these are selected under a fluorescence microscope or isolated on a bead sorter. Edman sequence analysis yields the substrate sequence, the cleavage point, and the degree of conversion. The method gives a complete map of the substrate specificity, and substrates with high affinity for the active site can be selected. These may in turn be used as inhibition indicators in a second solid phase library assay for enzyme inhibition where each single bead is transformed into an assay container. The substrate is attached to temporarily shielded functional groups after completion of inhibitor library synthesis. By using a photolabile linker and ladder synthesis, the active inhibitors may be rapidly identified by mass spectrometry. In each bead, the putative inhibitor competes with the substrate attached for binding to the enzyme, and when the inhibitor binds strongly, the substrate remains intact and quenched. Thus dark beads indicate inhibitors, and these may be isolated using a bead-sorter and the structure determined by mass spectrometry. A selection of the best substrates and inhibitors should always be resynthesized for solution kinetics and confirmation of the results obtained on solid support. The inhibitor assay is almost free from false positives, which is a consequence of combining the binding of the protease to the inhibitor with observation of activity toward a FRET substrate. The K(i) of the identified inhibitors are typically in the nM range.  相似文献   

3.
Methyltransferases form a large class of enzymes, most of which use S-adenosylmethionine as the methyl donor. In fact, S-adenosylmethionine is second only to ATP in the variety of reactions for which it serves as a cofactor. Several methods to measure methyltransferase activity have been described, most of which are applicable only to specific enzymes and/or substrates. In this work we describe a sensitive liquid chromatography/mass spectroscopy-based methyltransferase assay. The assay monitors the conversion of S-adenosylmethionine to S-adenosylhomocysteine and can be applied to any methyltransferase and substrate of interest. We used the well-characterized enzyme catechol O-methyltransferase to demonstrate that the assay can monitor activity with a variety of substrates, can identify new substrates, and can be used even with crude preparation of enzyme. Furthermore, we demonstrate the utility of the assay for kinetic characterization of enzymatic activity.  相似文献   

4.
The nearly 600 proteases in the human genome regulate a diversity of biological processes, including programmed cell death. Comprehensive characterization of protease signaling in complex biological samples is limited by available proteomic methods. We have developed a general approach for global identification of proteolytic cleavage sites using an engineered enzyme to selectively biotinylate free protein N termini for positive enrichment of corresponding N-terminal peptides. Using this method to study apoptosis, we have sequenced 333 caspase-like cleavage sites distributed among 292 protein substrates. These sites are generally not predicted by in vitro caspase substrate specificity but can be used to predict other physiological caspase cleavage sites. Structural bioinformatic studies show that caspase cleavage sites often appear in surface-accessible loops and even occasionally in helical regions. Strikingly, we also find that a disproportionate number of caspase substrates physically interact, suggesting that these dimeric proteases target protein complexes and networks to elicit apoptosis.  相似文献   

5.
Autocleavage assay and peptide-based cleavage assay were used to study the substrate specificity of 3CL protease from the severe acute respiratory syndrome coronavirus. It was found that the recognition between the enzyme and its substrates involved many positions in the substrate, at least including residues from P4 to P2'. The deletion of either P4 or P2' residue in the substrate would decrease its cleavage efficiency dramatically. In contrast to the previous suggestion that only small residues in substrate could be accommodated to the S 1' subsite, we have found that bulky residues such as Tyr and Trp were also acceptable. In addition, based on both peptide-based assay and autocleavage assay, Ile at the PI' position could not be hydrolyzed, but the mutant L27A could hydrolyze the Ile peptide fragment. It suggested that there was a stereo hindrance between the S 1' subsite and the side chain of Ile in the substrate. All 20 amino acids except Pro could be the residue at the P2' position in the substrate, but the cleavage efficiencies were clearly different. The specificity information of the enzyme is helpful for potent anti-virus inhibitor design and useful for other coronavirus studies.  相似文献   

6.
SARS main protease is essential for life cycle of SARS coronavirus and may be a key target for developing anti-SARS drugs. Recently, the enzyme expressed in Escherichia coli was characterized using a HPLC assay to monitor the formation of products from 11 peptide substrates covering the cleavage sites found in the SARS viral genome. This protease easily dissociated into inactive monomer and the deduced Kd of the dimer was 100 microM. In order to detect enzyme activity, the assay needed to be performed at micromolar enzyme concentration. This makes finding the tight inhibitor (nanomolar range IC50) impossible. In this study, we prepared a peptide with fluorescence quenching pair (Dabcyl and Edans) at both ends of a peptide substrate and used this fluorogenic peptide substrate to characterize SARS main protease and screen inhibitors. The fluorogenic peptide gave extremely sensitive signal upon cleavage catalyzed by the protease. Using this substrate, the protease exhibits a significantly higher activity (kcat = 1.9 s(-1) and Km = 17 microM) compared to the previously reported parameters. Under our assay condition, the enzyme stays as an active dimer without dissociating into monomer and reveals a small Kd value (15 nM). This enzyme in conjunction with fluorogenic peptide substrate provides us a suitable tool for identifying potent inhibitors of SARS protease.  相似文献   

7.
Higher plants, bacteria, fungi, insects, and crustaceans all produce chitinases. Chitinase genes in many organisms are currently under investigation. Chitinase activity is usually assayed with radiolabeled or fluorogenic substrates. We developed a simple, inexpensive, nonradioactive gel-diffusion assay for chitinase that can be used to screen large numbers of samples. In this assay, chitinase diffuses from a small circular well cut in an agarose or agar gel containing the substrate glycol chitin, a soluble, modified form of chitin. Chitinase catalyzes the cleavage of glycol chitin as it diffuses through the gel, leaving a dark, unstained circular zone around the well, because the fluorescent dye calcofluor binds only to undigested chitin. Sample activities can be determined from linear regression of logstandard enzyme concentration versus the zone diameter of internal standards on each Petri dish used for a diffusion assay.  相似文献   

8.
Rapid, sensitive, and quantitative assays for proteases are important for drug development and in the diagnosis of disease. Here an assay for protease activity that uses inductively coupled plasma-mass spectrometry (ICP-MS) detection is described. Peptidic α-chymotrypsin substrates were synthesized containing a lanthanide ion chelate at the N terminus to provide a distinct elemental tag. A biotin label was appended to the C terminus of the peptide, allowing separation of uncleaved peptide from the enzymatic digestion. The enzyme activity was determined by quantifying the lanthanide ion signal of the peptide cleavage products by ICP-MS. Biotinylated substrates synthesized include Lu-DTPA-Asp-Leu-Leu-Val-Tyr∼Asp-Lys(biotin) and Lu-DTPA-βAla-βAla-βAla-βAla-Gly-Ser-Ala-Tyr∼Gly-Lys-Arg-Lys(biotin)-amide. Parallel assays with a commercially available fluorogenic substrate (Suc-AAPF-AMC) for α-chymotrypsin were performed for comparison. Using the ICP-MS assay, enzyme concentrations as low as 2 pM could be readily detected, superior to the detection limit of an assay using the α-chymotrypsin fluorogenic substrate (Suc-AAPF-AMC). Furthermore, we demonstrated the use of this approach to detect chymotrypsin activity in HeLa cell lysates.  相似文献   

9.
Chemiluminescent assays of various enzymes have been developed using indoxyl derivatives as substrates. The principle of the method is as follows: an enzyme causes hydrolysis of an indoxyl derivative to an intermediate indoxyl that is readily oxidized to indigo dye and simultaneously produces hydrogen peroxide (H2O2). Hydrogen peroxide is detected chemiluminescently using isoluminol-microperoxidase. Alkaline phosphatase (ALP), beta-D-galactosidase (beta-gal), and beta-glucosidase were assayed by this method using 5-bromo-4-chloro-3-indolyl phosphate (BCIP), 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), and 5-bromo-4-chloro-3-indolyl-beta-D-glucoside, respectively, as substrates. Using BCIP and X-Gal substrates, we have been able to detect 10(-19) mol of ALP and beta-gal, respectively. This assay system can be applied to enzyme immunoassay and DNA probe assay.  相似文献   

10.
BACKGROUND: Members of the subtilisin family of serine proteases usually have a conserved asparagine residue that stabilizes the oxyanion transition state of peptide-bond hydrolysis. Yeast Kex2 protease is a member of the subtilisin family that differs from the degradative subtilisin proteases in its high substrate specificity, it processes pro-alpha-factor, the precursor of the alpha-factor mating pheromone of yeast, and also removes the pro-peptide from its own precursor by an intramolecular cleavage reaction. Curiously, the mammalian protease PC2, a Kex2 homolog that is likely to be required for pro-insulin processing, has an aspartate in place of asparagine at the 'oxyanion hole'. RESULTS: We have tested the effect of making substitutions of the conserved oxyanion-hole asparagine (Asn 314) of the Kex2 protease. To do this, we have developed a rapid method of site-directed mutagenesis, involving homologous recombination of a polymerase chain reaction product in yeast. Using this method, we have substituted alanine or aspartate for Asn 314 in a form of Kex2 engineered for secretion. Transformants expressing the two mutant enzymes could be identified by failure either to produce mature alpha-factor or to mate. The Ala 314 enzyme was unstable but the Asp 314 enzyme accumulated to a high level, so that it could be purified and its activity towards various substrates tested in vitro. We found that, with three peptides that are good substrates of wild-type Kex2, the k(cal) of the Asp 314 enzyme was reduced approximately 4500-fold and its K(M) approximately 4-fold, relative to the wild-type enzyme. For the peptide substrate corresponding to the cleavage site of pro-alpha-factor, however, k(cat) of the Asp 314 enzyme was reduced only 125-fold, while the K(m) was increased 3-fold. Despite its reduced catalytic activity, however, processing of the mutant enzyme in vivo - by the intramolecular cleavage that removes its amino-terminal pro-domain - occurs at an unchanged rate. CONCLUSIONS: The effects of the Asn 314-Asp substitution reveal contributions to the reaction specificity of the Kex2 protease of substrate residues amino-terminal to the pair of basic residues at the cleavage site. Aspartate at the oxyanion hole appears to confer k(caf) discrimination between substrates by raising the energy barrier for productive substrate binding: this may have implications for pro-insulin processing by the PC2 protease, which has an aspartate at the equivalent position. The rate of intramolecular cleavage of pro-Kex2 may be limited by a step other than catalysis, presumably protein folding.  相似文献   

11.
A microplate assay specific for the enzyme aggrecanase   总被引:1,自引:0,他引:1  
We have identified a 41-residue peptide, bracketing the aggrecanase cleavage site of aggrecan, that serves as a specific substrate for this enzyme family. Biotinylation of the peptide allowed its immobilization onto streptavidin-coated plates. Aggrecanase-mediated hydrolysis resulted in an immobilized product that reveals an N-terminal neoepitope, recognized by the specific antibody BC-3. This assay is highly specific for aggrecanases; MMPs were inactive in this assay. Reduction of the peptide size below 30 amino acids resulted in a significant diminution of activity. Using the immobilized 41-residue peptide as a substrate, we have developed a 96-well microplate-based assay that can be conveniently used for high-throughput screening of samples for aggrecanase activity and for discovery of inhibitors of aggrecanase activity.  相似文献   

12.
An assay method that continuously measures the protein tyrosine phosphatase (PTP)-catalyzed dephosphorylation reaction based on fluorescence resonance energy transfer (FRET) was developed as an improvement of our previously reported discontinuous version [M. Nishikata, K. Suzuki, Y. Yoshimura, Y. Deyama, A. Matsumoto, Biochem. J. 343 (1999) 385-391]. The assay uses oligopeptide substrates that contain (7-methoxycoumarin-4-yl)acetyl (Mca) group as a fluorescence donor and 2,4-dinitrophenyl (DNP) group as a fluorescence acceptor, in addition to a phosphotyrosine residue located between these two groups. In the assay, a PTP solution is added to a buffer solution containing a FRET substrate and chymotrypsin. The PTP-catalyzed dephosphorylation of the substrate and subsequent chymotryptic cleavage of the dephosphorylated substrate results in a disruption of FRET, thereby increasing Mca fluorescence. In this study, we used FRET substrates that are much more susceptible to chymotryptic cleavage after dephosphorylation than the substrate used in our discontinuous assay, thus enabling the continuous assay without significant PTP inactivation by chymotrypsin. The rate of fluorescence increase strictly reflected the rate of dephosphorylation at appropriate chymotrypsin concentrations. Since the continuous assay allows the measurement of initial rate of dephosphorylation reaction, kinetic parameters for the dephosphorylation reactions of FRET substrates by Yersinia, T-cell and LAR PTPs were determined. The continuous assay was compatible with the measurement of very low PTP activity in a crude enzyme preparation and was comparable in sensitivity to assays that use radiolabeled substrates.  相似文献   

13.
Fang M  Macova A  Hanson KL  Kos J  Palmer DR 《Biochemistry》2011,50(40):8712-8721
MenD catalyzes the thiamin diphosphate-dependent decarboxylative carboligation of α-ketoglutarate and isochorismate. The enzyme is essential for menaquinone biosynthesis in many bacteria and has been proposed to be an antibiotic target. The kinetic mechanism of this enzyme has not previously been demonstrated because of the limitations of the UV-based kinetic assay. We have reported the synthesis of an isochorismate analogue that acts as a substrate for MenD. The apparent weaker binding of this analogue is advantageous in that it allows accurate kinetic experiments at substrate concentrations near K(m). Using this substrate in concert with the dead-end inhibitor methyl succinylphosphonate, an analogue of α-ketoglutarate, we show that MenD follows a ping-pong kinetic mechanism. Using both the natural and synthetic substrates, we have measured the effects of 12 mutations of residues at the active site. The results give experimental support to previous models and hypotheses and allow observations unavailable using only the natural substrate.  相似文献   

14.
15.
Aminopeptidases process the N-terminal amino acids of target substrates by sequential cleavage of one residue at a time. They are found in all cell compartments of prokaryotes and eukaryotes, being implicated in the major proteolytic events of cell survival, defense, growth, and development. We present a new approach for the fast and reliable evaluation of the substrate specificity of individual aminopeptidases. Using solid phase chemistry with the 7-amino-4-carbamoylmethylcoumarin fluorophore, we have synthesized a library of 61 individual natural and unnatural amino acids substrates, chosen to cover a broad spectrum of the possible interactions in the S1 pocket of this type of protease. As proof of concept, we determined the substrate specificity of human, pig, and rat orthologs of aminopeptidase N (CD13), a highly conserved cell surface protease that inactivates enkephalins and other bioactive peptides. Our data reveal a large and hydrophobic character for the S1 pocket of aminopeptidase N that is conserved with aminopeptidase Ns. Our approach, which can be applied in principle to all aminopeptidases, yields useful information for the design of specific inhibitors, and more importantly, reveals a relationship between the kinetics of substrate hydrolysis and the kinetics of enzyme inhibition.  相似文献   

16.
Most protease-substrate assays rely on short, synthetic peptide substrates consisting of native or modified cleavage sequences. These assays are inadequate for interrogating the contribution of native substrate structure distal to a cleavage site that influences enzymatic cleavage or for inhibitor screening of native substrates. Recent evidence from HIV-1 isolates obtained from individuals resistant to protease inhibitors has demonstrated that mutations distal to or surrounding the protease cleavage sites in the Gag substrate contribute to inhibitor resistance. We have developed a protease-substrate cleavage assay, termed the cleavage enzyme- cytometric bead array (CE-CBA), which relies on native domains of the Gag substrate containing embedded cleavage sites. The Gag substrate is expressed as a fluorescent reporter fusion protein, and substrate cleavage can be followed through the loss of fluorescence utilizing flow cytometry. The CE-CBA allows precise determination of alterations in protease catalytic efficiency (k(cat)/K(M)) imparted by protease inhibitor resistance mutations in protease and/or gag in cleavage or noncleavage site locations in the Gag substrate. We show that the CE-CBA platform can identify HIV-1 protease present in cellular extractions and facilitates the identification of small molecule inhibitors of protease or its substrate Gag. Moreover, the CE-CBA can be readily adapted to any enzyme-substrate pair and can be utilized to rapidly provide assessment of catalytic efficiency as well as systematically screen for inhibitors of enzymatic processing of substrate.  相似文献   

17.
β-Galactosidase (β-gal) is commonly used as a reporter gene in biological research, and a wide variety of substrates have been developed to assay its activity. One substrate, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) β-d-galactopyranoside (DDAOG), can be cleaved by β-gal to produce 7-hydroxy-9H(I,3-dichloro-9,9-dimethylacridin-2-one) (DDAO). On excitation, DDAO generates a far-red-shifted fluorescent signal. Using this substrate, we developed a β-gal activity assay method. The DDAO signal was stable for at least 18 h. The signal intensity was linearly related to both the enzyme amount and substrate concentration. An optimized buffer for the β-gal/DDAOG assay was also formulated. When compared with the colorimetric substrate o-nitrophenyl-β-d-galactopyranoside (ONPG), the signal-to-background ratio of the DDAOG method was approximately 12-fold higher. The β-gal/DDAOG assay method was also tested in transiently transfected cells employing both pharmacologically and genetically inducible gene expression systems. The ability to detect signal induction is comparable to a similar assay using luciferase as the signal generating moiety. The β-gal/DDAOG assay method should provide a fluorescent reporter assay system for the wide variety of β-gal systems currently in use.  相似文献   

18.
Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using 31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.  相似文献   

19.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer''s particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample).Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.  相似文献   

20.
Functional Analysis of Coordinated Cleavage in V(D)J Recombination   总被引:11,自引:8,他引:3       下载免费PDF全文
V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号