首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synapses of the rat superior cervical sympathetic ganglion were studied with both conventional and ultrastructural histochemical methods. Besides the cholinergic synapses polarized from preganglionic fibers to sympathetic ganglion neurons, two morphologically and functionally different types of synapses were observed in relation to the small granule-containing (catecholamine-containing) cells of the rat superior cervical ganglion. The first type is an efferent adrenergic synapse polarized from granule-containing cells to the dendrites of the sympathetic ganglion neurons. This type of synapse might mediate the inhibitory effects (slow inhibitory postsynaptic potentials) induced by catecholamines on the sympathetic neurons. The second type is a reciprocal type of synapse between the granule-containing cells and the cholinergic preganglionic fibers. Through such synapses, these cells could exert a modulating effect on the excitatory preganglionic fibers. Therefore, we propose that these cells, through their multiple synaptic connections, exhibit a local modulatory feedback system in the rat sympathetic ganglia and may serve as interneurons between the preganglionic and postganglionic sympathetic neurons.  相似文献   

2.
Using light and electron microscopy the neurons, glial cells and capillaries in hypoglossal nucleus of the rats have been examined up to 20 days after birth. The neuronal nuclei are usually situated ecentrically. The mitochondria and extensively developed Golgi-zones occupy the perinuclear region. The microtubules and lysosomes become more numerous with aging. At the earliest periods rough endoplasmic reticulum (ER) occupies the neuronal periphery, whereas after 14th day it is extended to the perinuclear region also. The ER forms elongated and concentric lamellated bodies and subsurface cisternae. At this time nucleolus like bodies are also numerous in the cytoplasm. After 4th and 6th days the extensive growth of dendrites, containing many cell organelles, and axons rich in microtubules are observed. Only at the birthday do neurons contain glycogen deposit. After 1st day the glycogen leaves the pericaryon, but it persists a long time in the neuronal processes. The symmetrical and asymmetrical contacts are characteristic for the examined period. The axo-somatic and axo-dendritic synapses are more abundant, but "double synapses" are also established. More synaptic boutons possess besides synaptic vesicles dense-core vesicles at the earlier periods. The quantity of asymmetric synapses increases with differentiation. Extensive cell degeneration has been established between 8 and 18th days. At 4 and 6 days the glial cells penetrate from subependymal layer and they have satellite neuronal position. This is more pronounced between 14 and 18 days when the oligodendrocytes are more numerous and active. At the same time fibrous astrocyte like cells are appeared. Microglial cells were not observed. Capillary differentiation, expressed by changes of the endothelial cells, pericytes and connective tissue cells, continues after birth also.  相似文献   

3.
1. Light- and electron microscopic investigations prove that synapses, without any exception, are confined to the neuropil. 2. Under the light-microscope, synapses display the shape of terminal boutons at the ends of the nerve fibres; in some cases they appear as smaller or larger plates. Electron microscopic investigations suggest that also varicosities of nerve fibres can be regarded as synapses, though these might have possible arisen from axoplasmatic peristalsis. 3. Electron microscopically the overwhelming majority of the synapses are axodendritic contacts; axo-axonic contacts occur less often. 4. The generally accepted characteristics of synapses are defective. Membrane thickenings and intersynaptic spaces are missing. Accordingly, synapses in the supraoesophageal ganglion of the water beetle differ markedly from those described in Vertebrates. 5. Synaptic vesicles sometimes fill the axoplasm of the nerve fibre completely. In other cases, clusters of synaptic vesicles can be seen, on both sides of the contact. 6. Synaptic vesicles are mixed with neurosecretory granules. Synaptic vesicles may appear also in the dendrites.  相似文献   

4.
gamma-Aminobutyric acid (GABA) was applied to the superior cervical ganglion (SCG) of CFY rats in vitro and in vivo, with or without implantation of a hypoglossal nerve, to evaluate the effects of these experimental interventions on the acetylcholine (ACh) system, which mainly serves the synaptic transmission of the preganglionic input. Long-lasting GABA microinfusion into the SCG in vivo apparently resulted in a "functional denervation." This treatment reduced the acetylcholinesterase (AChE; EC 3.1.1.7) activity by 30% (p less than 0.01) and transiently increased the number of nicotinic acetylcholine receptors, but had no significant effect on the choline acetyltransferase (acetyl-coenzyme A:choline-O-acetyltransferase; EC 2.3.1.6) activity, the ACh level, or the number of muscarinic acetylcholine receptors. The relative amounts of the different molecular forms of AChE did not change under these conditions. In vivo GABA application to the SCG with a hypoglossal nerve implanted in the presence of intact preganglionic afferent synapses exerted a significant modulatory effect on the AChE activity and its molecular forms. The "hyperinnervation" of the ganglia led to increases in the AChE activity (to 142.5%, p less than 0.01) and the 16S molecular form (to 200%, p less than 0.01). It is concluded that in vivo GABA microinfusion and GABA treatment in the presence of additional cholinergic synapses has a modulatory effect on the elements of the ACh system in the SCG of CFY rats.  相似文献   

5.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

6.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

7.
The structure of interneuronal synapses in the superior cervical sympathetic ganglion was studied in cats under normal conditions and after division of the cervical sympathetic nerves and removal of spinal ganglia T12–L2. A definite number of dendro-dendritic and dendro-somatic junctions is observed in the ganglion and most of them remained intact after operations of both types; they are probably synapses formed by dendrites of neurons located in the ganglion. Synapses of this sort participate in the formation of nest-like complexes, consisting of consecutive junctions of one neuron with several dendrites. The formation of such complexes may provide the anatomical basis for synchronization of rhythmic neuronal activity in the cellular glomeruli of the ganglion. The results of an ultrastructural study of dendro-dendritic junctions suggests that they are synaptic in nature. Some dendro-dendritic junctions underwent degeneration after both types of operation and are probably endings of neurons in spinal ganglia. Wide club-like structures, probably receptor endings, formed by dendrites of afferent neurons of spinal ganglia, also are found in the ganglion. These structures lie freely in the stoma of the ganglion or form contacts with axon terminals and dendrites of neurons located in the ganglion; some of them degenerate after removal of spinal ganglia T12–L2.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 299–306, May–June, 1981.  相似文献   

8.
Summary Various types of synaptic formations on pinealocytes and pineal neurons were found in the pineal body of Macaca fuscata. Axo-somatic synapses of the Gray type-II category were detected on the pinealocyte cell body. Gap junctions and ribbon synapses were observed between adjacent pinealocytes. About 70 nerve-cell bodies were detected in one half of the whole pineal body bisected midsagittally. They were localized exclusively deep in the central part. When examined electron-microscopically, they were found to receive ribbon-synapse-like contacts from pinealocytic processes. They also received synaptic contacts of the Gray type-I category on their dendrites, and those of the Gray type-II category on their cell bodies from nerve terminals of unknown origin. All these synapse-forming axon terminals contained small clear vesicles. Thus, the pineal neurons of the monkey, at least in part, are suggested to be derived from the pineal ganglion cells in the lower vertebrates and not from the postganglionic parasympathetic neurons. The functional significance of these observations is discussed in relation to the innervation of the pineal body of the monkey.  相似文献   

9.
In order to understand the significance of cell death in the formation of neural circuits, it is necessary to determine whether before cell death neurons have (a) sent axons to the periphery; (b) reached the proper target organs; and (c) have established synaptic connections with them. Axon counts demonstrated that, after sending out initial axons, ciliary cells sprouted numerous collaterals at the time of peripheral synapse formation. Subsequently, large numbers of axons were lost from the nerves, slightly later than the onset of ganglion cell death. A secondary loss of collaterals later occurred unaccompanied by cell death. Measurements of conduction velocity and axon diameters indicated that all ganglion cell axons grew down the proper pathways from the start, but it was not possible to determine whether all axons had actually formed proper synapses. This was ascertained, however, in the ganglion itself where preganglionic fibres were shown to synapse selectively with all ganglion cells before cell death. During this period, degenerating preganglionic synapses were observed on normal cells. It can therefore be inferred that at least some preganglionics established proper synapses before dying and that a single synapse is not sufficient to prevent cell death. In this system neither preganglionic nor ganglionic cell death seems designed to remove improper connections but rather to remove cells that have not competed effectively for a sufficient number of synapses, resulting in a quantitative matching up of neuron numbers.  相似文献   

10.
Apart from being a prominent (inhibitory) neurotransmitter that is widely distributed in the central and peripheral nervous system, -aminobutyric acid (GABA) has turned out to exert trophic actions. In this manner GABA may modulate the neuroplastic capacity of neurons and neuron-like cells under various conditions in situ and in vitro. In the superior cervical ganglion (SCG) of adult rat, GABA induces the formation of free postsynaptic-like densities on the dendrites of principal neurons and enables implanted foreign (cholinergic) nerves to establish functional synaptic contacts, even while preexisting connections of the preganglionic axons persist. Apart from postsynaptic effects, GABA inhibits acetylcholine release from preganglionic nerve terminals and changes, at least transiently, the neurochemical markers of cholinergic innervation (acetylcholinesterase and nicotinic receptors). In murine neuroblastoma cells in vitro, GABA induces electron microscopic changes, which are similar in principle to those seen in the SCG. Both neuroplastic effects of GABA, in situ and in vitro, could be mimicked by sodium bromide, a hyperpolarizing agent. In addition, evidence is available that GABA via A- and/or B-receptors may exert direct trophic actions. The regulation of both types of trophic actions (direct, receptor-mediated vs. indirect, bioelectric activity dependent) is discussed.Special issue dedicated to Dr. Claude Baxter.  相似文献   

11.
Ganglion cells in the circumvallate papilla of adult rodents are described as typical autonomic neurons. Some neurons are aggregated to form a discrete structure in the base of the papilla; others are scattered through the core, along the nerve bundles, and particularly near the dome. The term "circumvallate ganglion" is applied to the entire population. Satellite cells completely ensheathe each neuron. Preganglionic fibers, containing clear vesicles, synapse on the soma and stumpy dendrites of the neurons. Axons, containing dense-cored vesicles, are observed in close proximity to the neurons. However, these fibers do not establish true morphological synaptic contacts with the neurons. We have not observed serial or reciprocal synapses on or in the vicinity of the ganglion cells. The hypothesis that the axons of the circumvallate ganglion neurons act as parasympathetic vasodilators is indicated by the proximity of the two structures and by nerve terminations on the arteriole muscle cells. Direct modulation of taste transduction by these neurons is ruled out.  相似文献   

12.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

14.
The innervation of the carotid body in the cat was studied by means of light- and electron-microscopic techniques. Sinus nerve resection, glossopharyngeal resection, bilateral cervical sympathectomy, excisions of two nerves, and injection of 6-hydroxydopamine (6-OH-DA) were performed in different groups of animals. It was found that resection of the sinus nerve produces a rapid phase of degeneration of intralobular fibers and synaptic boutons, followed by a reinnervation with a progressive reappearance of these elements. This reinnervation is retarded by sympathectomy and prevented by 6-OH-DA. It is therefore concluded that reinnervation is due to collateral regeneration of nearby sympathetic fibers. Resection of the sinus nerve produces an increase in the number of argentaffin cells and dense-cored vesicles in the cytoplasm of principal cells. These findings suggest the existence of efferent synaptic contacts between this nerve and principal cells. Part of the intralobular fibers and synaptic boutons degenerate after bilateral sympathectomy demonstrating that sympathetic axons connect synaptically to the principal cells. Sympathetic fibers reach the carotid body, not only from branches of the cervical plexuses but also from fibers running in the adventitia of the common carotid artery, and via glossopharyngeal and sinus nerves. The vagus nerve contributes a few fibers to the parenchymal lobules of the carotid body.  相似文献   

15.
Zhuravleva ZH 《Ontogenez》2002,33(3):230-235
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

16.
It has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.  相似文献   

17.
Summary The ultrastructural study of the lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) revealed two types of neurons: (1) a large thalamocortical relay cell (TCR), which may bear cilia, and (2) a small Golgi type-II interneuron (IN) with an invaginated nucleus. The narrow rim of pale cytoplasm of the IN contains fewer lysosomes and fewer Nissl bodies than the cytoplasm of the TCR. The IN perikarya, which in some cases establish somatosomatic contacts, frequently contain flattened or pleomorphic synaptic vesicles. The ratio of TCR to IN is 31.Three types of axon terminals were observed in the LGN. Two of them contain round synaptic vesicles but differ in size. The large RL boutons undergo dark degeneration after enucleation; they are the terminals of retino-geniculate fibers. The smaller RS boutons show dark degeneration after ablation of the visual cortex; they are the terminals of the cortico-geniculate fibers. The third type of bouton (F1 does not degenerate after either intervention. The boutons of this type are filled with flattened vesicles and are believed to be intrageniculate terminals. F2-profiles were interpreted as presynaptic dendrites of the IN. The characteristic synaptic glomeruli found in the LGN contain in their center an optic terminal. These optic terminals establish synaptic contacts with dendrites or spine-like dendritic protrusions of TCRs as well as with presynaptic dendrites. Synaptic triads were also seen. The distribution of the individual types of synaptic contacts in layers 3 and 4 was determined. Layer 4 contains only one third of the retino-geniculate synapses and of the synaptic contacts of F1-terminals.  相似文献   

18.
Summary To further evaluate the role of autonomic ganglia in the regulation of pelvic visceral activity, the neural elements in the major pelvic ganglion of the male rat have been studied with histochemical and electron microscopic techniques. The principal findings are that the ganglion is composed of cholinergic and adrenergic ganglion cells as well as small intensely fluorescent (SIF) cells. Polarity in the ganglion is indicated by clustering of small ganglion cells which stain intensely for acetylcholinesterase (AChE) along the pelvic nerve while larger cells, with weak to moderate AChE activity, collect near small branches of the hypogastric nerve. Some cholinergic ganglion cells are enclosed by a plexus of adrenergic terminals. SIF cells appear to be in contact with both cholinergic and adrenergic cells, although many of the fluorescent beads around adrenergic neurons may be short dendrites of ganglion cells, rather than processes of SIF cells. Two types of SIF cells may be distinguished on the basis of size and morphology of their granulated vesicles. Afferent synapses of the cholinergic type were common on SIF cells of the large granule and small granule type. Portions of SIF cells with large granules occur within the capsule of ganglion cells. Contacts seen here were interpreted as efferent synapses from SIF cells to the dendrites of ganglion cells.  相似文献   

19.
Laser beam ablation of spiral ganglion neurons was performed in seven organotypic cultures of the newborn mouse cochlea between 5 and 8 days in vitro, with a recovery period of from 18 hours to 3 days. Direct somatic injury (laser or mechanical) inflicted on hair cells does not necessarily cause their death; many of them survive, repair damage and re-establish their neurosensory connections. By contrast, laser irradiation and ablation of their afferent spiral ganglion neurons causes a most spectacular degeneration of sensory cells within 18–48 hours after the insult. Ultrastructurally, the degenerated hair cells—characteristically the inner hair cells—display “dark-cell vacuolar degeneration” that combines the signs of apoptotic death (the peripheral condensation of nuclear chromatin and nuclear pyknosis) with signs of cell edema, vacuolization and necrosis. The ultimate condensation of the cytoplasm gives the dead cells a jet black appearance. The irradiated spiral ganglion neurons die displaying similar pathological characteristics. The extent and locus of inner hair cell degeneration correspond to that of ablated spiral ganglion neurons: ultimately the ablation of one neuron causes degeneration of a single inner hair cell within the closest radial segment of the afferent innervation. The elimination of spiral ganglion neurons by mechanical means does not affect hair cell survival. It is inferred that the laser pulse acts as a stimulus depolarizing the neuronal membrane of the spiral ganglion neurons and their radial fibers and causing the excitotoxic death of their synaptic sensory cells through excessive stimulation of the glutamatergic receptors. Reciprocal pre-and postsynaptic synapses between the afferent dendrites and inner hair cells in culture could possibly serve as entryways of the stimulus. The pathogenesis of this apparent transsynaptically-induced apoptotic death of inner hair cells will be further examined in culture.  相似文献   

20.
Pyramidal, aspinous, sparsely-spinous bipolar and multipolar neurons of the rat sensomotor cerebral cortex, impregnated after Golgi method, have been studied at an electron microscopical level. The ultrastructural characteristics of the pyramidal neurons differs from that of the nonpyramidal cells. Distribution of various synaptic contacts on the cellular surface and cortical postsynaptic targets of the axonal arborizations of the neurons are revealed. On the body of the pyramidal cells only symmetrical synapses exist, on large dendritic trunks symmetrical synapses prevail, on the spines and the terminal dendritic branches assymetrical synapses mainly predominate. Axonal collateralies of the pyramidal cells form asymmetrical synapses on the spines, small and middle dendrites. There are more axo-somatic synapses on the bodies of the nonpyramidal neurons than on the pyramidal cells, among them both symmetrical and asymmetrical types of the synapses occur. On the trunks and small dendrites of the nonpyramidal cells both types of synaptic contacts are revealed. In the distal direction of the dendrites the number of the asymmetrical synapses becomes predominating. Axons of the bipolar cells form asymmetrical synapses on the spines, small and middle dendrites. Axons of the multipolar cells form symmetrical synapses on the dendrites and the dendritic trunks of the nondifferentiated cells. Differences in the distribution character of the synaptic inlets and various postsynaptic targets of the axonal systems in the cells assume various functional role of the identified neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号