首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To elucidate the effect of gene transfected marrow stromal cell on expansion of human cord blood CD34+ cells, a culture system was established in which FL and TPO genes were transfected into human stromal cell line HFCL. To establish gene transfected stromal cells co-culture system, cord blood CD34+ cells were purified by using a magnetic beads sorting system. The number of all cells and the number of CD34+ cells and CFC (CFU-GM and BFU-E) were counted in different culture systems. The results showed that in all 8 culture systems, SCF+IL-3+HFT manifested the most potent combination, with the number of total nucleated cells increasing by (893.3 ±52.1)-fold, total progenitor cells (CFC) by (74.5 ±5.2)-fold and CD34+ cells by 15.7-fold. Maximal expansions of CFC and CD34+ cells were observed at the end of the second week of culture. Within 14 days of culture, (78.1 ± 5.5)-fold and (57.0 ± 19.7)-fold increases in CFU-GM and BFU-E were obtained. Moreover, generation of LTC-IC from amplified CD34+ cells within 28 days was found only in two combinations, i.e. SCF+IL-3+FL+TPO and SCF+IL-3+HFT, and there was no significant difference between these two groups statistically. These results suggest that human umbilical cord blood CD34+ cells can be extensively expandedex vivo by using gene transfected stromal cells along with cytokines.  相似文献   

2.
The growth factor combination containing early acting cytokines FLT-3 ligand (FL), Stem Cell Factor (SCF) and thrombopoietin (TPO) is able to maintain, for an extended culture period, early stem cells, defined as long-term repopulating NOD/SCID mice (Scid Repopulating Cell-SRC) contained in cord blood (CB). In this culture system, the role of IL-6 and IL-3 has not been clearly established. Using a combination of FL+TPO+SCF with or without IL-6, we were able to form CB CD34+ cells for 30 weeks. The CB CD34+ cells cultured in this system engrafted NOD/SCID mice after 6 weeks of culture; the cells from primary recipients were also able to engraft secondary NOD/SCID mice. When CB CD34+ cells were cultured in the presence of IL-3 in the place of IL-6 we observed an even better expansion of cells and a similar clonogenic progenitor output in the first 8 weeks of culture. However, more primitive LTC-IC output increased up to week 6 with the growth factor combination containing IL-3 and then decreased and disappeared, while with the growth factor combination with or without IL-6 increased up to week 23. Cells cultured for 4 weeks with the 4-factor combination containing IL-3 engrafted NOD/SCID mice less efficiently. Repopulation of NOD/SCID mice was no longer observed when ex vivo expansion was performed for 6 weeks. This study provides some evidence that no differences could be detected in long-term maintenance and even expansion of human primitive cord blood cells cultured with FL+TPO+SCF in the presence or absence of IL-6. Under the culture conditions employed in this study, the presence of IL-3 reduced the repopulating potential of expanded CB CD34+ cells.  相似文献   

3.
Liu Y  Liu T  Fan X  Ma X  Cui Z 《Journal of biotechnology》2006,124(3):592-601
Expansion of umbilical cord blood mononuclear cells (UCB MNCs) was carried out in a rotating wall vessel (RWV) bioreactor and tissue culture flasks (T-flasks) in serum-containing medium supplemented with relatively low doses of purified recombinant human cytokines (5.33 ng/ml IL-3, 16 ng/ml SCF, 3.33 ng/ml G-CSF, 2.13 ng/ml GM-CSF, 7.47 ng/ml FL and 7.47 ng/ml TPO) for 8 days. The cell density, pH and osmolality of the culture medium in the two culture systems were measured every 24h. Flow cytometric assay for CD34+ cells was carried out at 0, 144 and 197 h and methylcellulose colony assays were performed at 0, 72, 144 and 197 h. The pH and osmolality of the medium in the two culture systems were maintained in the proper ranges for hematopoietic stem cells (HSCs) and progenitors culture. The RWV bioreactor, combined with a cell-dilution feeding protocol, was efficient to expand UCB MNCs. At the end of 200 h culture, the total cell number was multiplied by 435.5+/-87.6 times, and CD34+ cells 32.7+/-15.6 times, and colony-forming units of granulocyte-macrophage (CFU-GM) 21.7+/-4.9 times. While in T-flasks, however, total cells density changed mildly, CD34+ cells and CFU-GM decreased in number. It is demonstrated that the RWV bioreactor can provide a better environment for UCB MNCs expansion, enhance the contact between HSCs and accessory cells and make the utilization of cytokines more effective than T-flask.  相似文献   

4.
体外培养脐血单个核细胞与CD34+富集细胞   总被引:1,自引:0,他引:1  
对比MNC和CD34 +富集细胞在SCF +IL 3+IL 6 +FL +Tpo细胞因子组合下的体外扩增特性 ,发现 :CD34 +富集细胞具有很高的扩增潜力 ,在本实验条件下其总细胞持续扩增了 8周 ,扩增倍数达 312 70 9± 86 40 5倍 ;而MNC在培养至第 4周扩增就已呈现下降趋势 ,最大仅扩增了 5 3 3± 6 2倍。对比集落和CD34 +细胞的扩增发现 ,MNC的集落密度和CD34 +细胞含量由第 0天至第 7天有一个上升的过程 ,而CD34 +富集细胞在培养过程中 ,集落密度和CD34 +细胞含量却始终呈下降趋势。在体外培养过程中 ,CD34 +富集细胞的CFU GM和CD34 +细胞最大分别扩增了 185 7± 14 1和 191 7± 188 8倍 ,明显高于MNC的 12 4± 3 2和 5 0 6± 33 2倍 ;而CD34 +富集细胞和MNC的BFU E则只实现了少量扩增 ,分别为 7 2± 5 2和 10 1± 3 4倍。结果显示 ,从CD34 +富集细胞出发扩增造血干 祖细胞 ,可以得到更多的CD34 +细胞和CFU GM集落形成细胞  相似文献   

5.
This study compared the cell expansion and colony-forming ability of human cord blood stem cells cultured ex vivo with 2 types of cytokine combinations, and 2 types of media characterized by the presence or absence of fetal bovine serum (FBS) in 2 or 3 dimensional (2D or 3D) culture environments. Purified CD34+ cells derived from different donors were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) and Ultraculture serum-free medium (SFM) containing the cytokine cocktail-I (coc-I) (EPO, GM-CSF, SCF, and IL-3) or cytokine cocktail-II (coc-II) (TPO, G-CSF, SCF, IL-6, and Flt3/Flk-2 ligand) with or without FBS. Generally, higher CFU-GM values were observed in the IMDM compared to the SFM. In the coc-I conditions, the ‘IMDM + coc-I’ and ‘IMDM + coc-I + FBS’ conditions gave the greatest cell (1,667 ± 274 and 1,600 ± 140-fold, respectively) and colony-forming units (CFU) expansions (BFU-E: 21 ± 3, 36 ± 5; CFU-GM: 95 ± 19, 81 ± 17; and CFU-GEMM: 2 ± 1, 3 ± 1-fold, respectively) in 26 day culture, respectively. In the coc-II conditions, the ‘SFM + coc-II’ condition gave the greatest cell expansion (2,143 ± 134-fold), but the ‘IMDM + coc-II’ condition gave the best CFU-GM expansion (924 ± 110-fold) in 26 day culture. In conclusion, ‘IMDM + coc-I’ and ‘IMDM + coc-II’ were the most accessible conditions for CFU expansion for all culture cases. The 2D stationary culture had affirmative effect on CFU expansion compared to the 3D culture using semisolid Methocult™. These results are believed to be significant in the ex vivo expansion of hematopoietic stem cells.  相似文献   

6.
We examined the effects of IL-9 on human mast cell development from CD34(+) cord blood (CB) and peripheral blood cells in serum-deprived cultures. IL-9 apparently enhanced cell production under stimulation with stem cell factor (SCF) from CD34(+) CB cells. A great majority of the cultured cells grown with SCF + IL-9 became positive for tryptase at 4 wk. In methylcellulose cultures of CD34(+) CB cells, IL-9 increased both the number and size of mast cell colonies grown with SCF. Furthermore, SCF + IL-9 caused an exclusive expansion of mast cell colony-forming cells in a 2-wk liquid culture of CD34(+) CB cells, at a level markedly greater than for SCF alone. Clonal cell cultures and RT-PCR analysis showed that the targets of SCF + IL-9 were the CD34(+)CD38(+) CB cells rather than the CD34(+)CD38(-) CB cells. IL-9 neither augmented the SCF-dependent generation of progeny nor supported the survival of 6-wk-cultured mast cells. Moreover, there was no difference in the appearance of tryptase(+) cells and histamine content in the cultured cells between SCF and SCF + IL-9. The addition of IL-9 increased numbers of mast cell colonies grown with SCF from CD34(+) peripheral blood cells in children with or without asthma. It is of interest that mast cell progenitors of asthmatic patients responded to SCF + IL-9 to a greater extent than those of normal controls. Taken together, IL-9 appears to act as a potent enhancer for the SCF-dependent growth of mast cell progenitors in humans, particularly asthmatic patients.  相似文献   

7.
Wnt 信号通路在造血干/祖细胞自我更新的过程中发挥至关重要的作用 . 纯化的 Wnt3a 蛋白可以实现造血干/祖细胞的扩增 . 通过病毒转染原代小鼠骨髓基质细胞,建立转基因滋养层细胞 . 通过共培养对转基因滋养层细胞扩增 CD34+ 造血干/祖细胞的作用进行了研究 . 实验结果显示 , 与普通滋养层加细胞因子组相比,经转基因滋养层加细胞因子组培养的 CD34+造血干/祖细胞集落形成能力 (CFC) 是其 (1.55±0.06) 倍;混合集落形成能力是其 (1.95±0.26) 倍;高增殖潜能集落形成能力 (HPP-CFC) 是其 (1.45±0.40) 倍; LTC-IC 活性是其 (3.83±0.86) 倍 . 结果表明,转基因滋养层细胞通过分泌具有天然活性的 Wnt3a 蛋白能在体外有效地扩增造血干/祖细胞的数量 .  相似文献   

8.
We have analyzed the effect of stem cell factor (SCF), alone or in combination with other growth factors, on the generation of colony-forming cells (CFC) and on the expansion of hematopoiesisin vitro from light density, soybean agglutinin, CD34+ cord blood cells under serum-deprived conditions. The growth factors were either added only once at the onset of the culture or added every few days when the cultures were demidepopulated and refed with fresh medium. No growth factor, alone, generated CFC or expanded hematopoiesis under these conditions. However, SCF, in combination with interleukin 3 (IL-3) or with late-acting factors (granulocyte colony-stimulating factor (G-CSF) or erythropoietin (Epo)), generated large numbers of mature cells as well as CFC. The number of CFC generated depended on the refeeding procedure adopted. In cultures never refed, the CFC numbers increased from > 160 CFC/culture at day 0 to > 3000 CFC at day 10. The CFC numbers stayed above the input levels for 25 days before declining. Almost no CFC were detectable after one month. In contrast, in cultures regularly refed, CFC were detectable for at least 40 days. The lineages of the mature cells and the types of CFC generated varied with the different growth factors. In the presence of SCF plus IL-3, erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (GM-CFC) were generated and erythroid as well as myelomonocytic precursors were present among the differentiated cells. In contrast, in the presence of SCF and G-CSF or Epo, the progenitor cells as well as the differentiated cells were dictated by the late-acting growth factor (i.e. mostly G-CFC and myeloid cells in the presence of SCF and G-CSF vs. BFU-E, erythroid colony-forming cells (CFU-E) and erythroblasts in the presence of SCF and Epo). Thus, marked expansion of erythropoiesis and granulopoiesis can be achievedin vitro by as few as two factors — SCF acting as the early factor along with the appropriate late-acting factor.Paper presented in part at the World Congress on Cell Cultures, Washington D.C., 21–24 June 1992.  相似文献   

9.
Dendritic cells (DC) generated from human umbilical cord blood might replace patients' DC in attempts to elicit tumor-specific immune response in cancer patients. We studied the efficiency of transfection of human cord blood DC with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene, to test if nonviral gene transfer would be a method to load DC with protein antigens for immunotherapy purposes. Cord blood mononuclear cells were cultured in serum-free medium in the presence of granulocyte-monocyte colony stimulating factor (GM-CSF), stem cell factor (SCF) and Flt-3 ligand (FL), to generate DC from their precursors, and thereafter transfected by electroporation. Maturation of DC was induced by stimulation with GM-CSF, SCF, FL and phorbol myristate acetate (PMA). Transfected DC strongly expressed EGFP, but transfection efficiency of DC, defined as HLA-DR(+) cells lacking lineage-specific markers, did not exceed 2.5%. Expression of the reporter gene was also demonstrated in the DC generated from transfected, purified CD34(+) cord blood cells, by stimulation with GM-CSF, SCF, FL, and tumor necrosis factor alpha (TNF-alpha). Transfection of CD34(+) cells was very efficient, but proliferation of the transfected cells was much reduced as compared to the untransfected cells. Therefore, the yield of transgene-expressing DC was relatively low. In conclusion, nonviral transfection of cord blood DC proved feasible, but considering the requirements for immunotherapy in cancer patients, transfection of differentiated DC or generation of DC from transfected hematopoietic stem cells provide only a limited number of DC expressing the transgene.  相似文献   

10.
Although umbilical cord blood is increasingly being used in allogeneic marrow transplantation, delayed platelet engraftment is often a concern for cord blood transplant recipients. We evaluated the potential of ex vivo expansion and clonality in CD34+ cells separated from a bone marrow source, and cord blood, in a serum-free Media. The CD34+ cells, selected from bone marrow (BM) and umbilical cord blood (CB), were expanded with hematopoietic growth factors. They were then cultured for burst-forming units of erythrocytes (BFU-E), colony-forming units of granulocytes and monocytes (CFU-GM) and colony-forming units of megakaryocytes (CFU-Mk) at days 0, 4, 7, and 14 under the combination of growth factors, with cell counts. The cytokines included the recombinant human megakaryocyte growth and development (100 ng/ml), interleukin-3 (10 ng/ml), stem cell factor (100 ng/ml), flt-3 ligand (50 ng/ml) and interleukin-11 (200 ng/ml). The CB-selected CD34+ cells showed significantly higher total cell expansion than those from the BM at day 7 (3.0 fold increase than BM), day 14 (2.4 fold), and day 17 (2.6 fold). The colony count of the BFU-E/CFU-E per CD34+ cell at day 0 was 0.14 +/- 0.023 in the CB, which was significantly higher than 0.071 +/- 0.015 in the BM. The CB-selected CD34+ cells produced more BFU-E colonies than the BM on culture days 4, 7, and 14. The BFU-E colonies from the CB cells increased markedly on culture days 4 and 7, with a 4-fold increase at day 14. The colony count of the CFU-Mk per CD34+ cell at day 0 was 0.047 +/- 0.011 in the CB-selected CD34+ cells cultures, which was higher than the 0.026 +/- 0.014 in the BM. The CB-selected CD34+ cells produced more CFU-Mk colonies than the BM on culture days 4, 7 and 14. In conclusion, the ex vivo expansion of the CB cells may be very promising in producing total cellular expansion, CFU-Mk and BFU-E compared with BM, especially at day 7. The ex vivo expansion of the CB may have rationale in making an ex vivo culture for 7 to 14 d.  相似文献   

11.
Long-term severe thrombocytopenia following human placental and umbilical cord blood (CB) transplantation is a significant clinical problem. We studied the ex vivo expansion of megakaryocytic progenitor cells (CFU-Meg) from cryopreserved/thawed leukocyte concentrates (LC) of CB prepared by the Tokyo Cord Blood Bank protocol. The LC cells were cultured in serum-free culture medium supplemented with a combination of early-acting cytokines including thrombopoietin (TPO), flt3-ligand (FL), and stem cell factor (SCF). Combination of TPO plus FL, TPO plus SCF, and all of these cytokines together resulted in 8.9-, 7.7-, and 8.4-fold increases in CFU-Meg, respectively, by Day 5 of culture. Our results showed that this simple expansion strategy has the potential for expanding CFU-Meg from cryopreserved/thawed LC cells from CB.  相似文献   

12.
An increase in circulating mast cell colony-forming cells in asthma   总被引:7,自引:0,他引:7  
We compared a potential to generate mast cells among various sources of CD34(+) peripheral blood (PB) cells in the presence of stem cell factor (SCF) with or without thrombopoietin (TPO), using a serum-deprived liquid culture system. From the time course of relative numbers of tryptase-positive and chymase-positive cells in the cultured cells grown by CD34(+) PB cells of nonasthmatic healthy individuals treated with G-CSF, TPO appears to potentiate the SCF-dependent growth of mast cells without influencing the differentiation into mast cell lineage. CD34(+) PB cells from asthmatic patients in a stable condition generated significantly more mast cells under stimulation with SCF alone or SCF+TPO at 6 wk of culture than did steady-state CD34(+) PB cells of normal controls. Single-cell culture studies showed a substantial difference in the number of SCF-responsive or SCF+TPO-responsive mast cell progenitors in CD34(+) PB cells between the two groups. In the presence of TPO, CD34(+) PB cells from asthmatic children could respond to a suboptimal concentration of SCF to a greater extent, compared with the values obtained by those of normal controls. Six-week cultured mast cells of asthmatic subjects had maturation properties (intracellular histamine content and tryptase/chymase enzymatic activities) similar to those derived from mobilized CD34(+) PB cells of nonasthmatic subjects. An increase in a potential of circulating hemopoietic progenitors to differentiate into mast cell lineage may contribute to the recruitment of mast cells toward sites of asthmatic mucosal inflammation.  相似文献   

13.
Perfusion and static cultures of peripheral blood (PB) mononuclear cells (MNCs), obtained from patients following stem cell mobilization, were supplemented with interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor (G-CSF), and stem cell factor (SCF) and compared with and without a preformed irradiated allogeneic bone marrow stromal layer. Perfusion cultures without a stromal layer effectively retained nonadherent cells through the use of a novel "grooved" perfusion chamber, which was designed with minimal mass transfer barriers in order to achieve a well-defined culture environment. The grooved chamber allowed easy and efficient culture inoculation and cell recovery. Average maximum expansion of CFU-GM (colony-forming unit granulocyte-macrophage) cells was observed on day 10 for all cultures. Perfusion cultures had a maximum CFU-GM expansion of 17- and 19-fold with and without a stromal layer, respectively. In contrast, static cultures had a maximum CFU-GM expansion of 18- and 13-fold with and without a stromal layer, respectively. Average long-term-culture initiating cell (LTC-IC) numbers on day 15 were 34% and 64% of input in stroma-containing and stroma-free perfusion cultures and 12% and 11% of input in stroma-containing and stroma-free static cultures, respectively. Thus, perfusion enhanced CFU-GM expansion and LTC-IC maintenance more for the stroma-free cultures than for stroma-containing cultures. This was surprising because analysis of medium supernatants indicated that the stroma-containing cultures were metabolically more active than the stroma-free cultures. In view of their equivalent, if not superior, performance compared to stroma-containing cultures, stroma-free perfusion cultures may offer significant advantages for potential clinical applications. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
造血细胞体外悬浮培养和生物反应器开发   总被引:1,自引:0,他引:1  
为解决造血细胞的静态培养中由浓度梯度引起的培养不稳定、环境不均一、难放大等问题,首先采用转瓶对脐血单个核细胞进行了悬浮培养研究,结果表明,悬浮培养中总细胞、集落和CD34细胞的扩增都高于静态的方瓶培养。在测试了所用材料生物相容性的基础上,开发了可以控制溶氧和pH的生物反应器,并将其应用到造血细胞的批培养中,结果表明反应器的培养环境均一,可实现较高密度的培养,而且总细胞、集落和CD34细胞的扩增都优于静态培养。大规模的反应器培养有利于解决临床应用中细胞数量不足的问题。  相似文献   

15.
Abstract: Bone marrow aplasia observed following ionizing radiation exposure (Total Body Irradiation; gamma dose range: 2-10 Gy) is a result, in particular, of the radiation-induced (RI) apoptosis in hematopoietic stem and progenitor cells (HSPC). We have previously shown in a baboon model of mobilized peripheral blood CD34+ cell irradiation in vitro that RI apoptosis in HSPC was an early event, mostly occurring within the first 24 hours, which involves the CD95 Fas pathway. Apoptosis may be significantly reduced with a combination of 4 cytokines (4F): Stem Cell Factor (SCF), FLT-3 Ligand (FL), thrombopoietin (TPO), and interleukin-3 (IL-3), each at 50 ng x mL(-1) (15% survival versus <3% untreated cells, 24 h post-irradiation at 2.5 Gy). In this study we show that addition of TNF-alpha(800 IU/ml) induces an increase in 4F efficacy in terms of cell survival 24 h after incubation (26% survival after 24 h irradiation exposure at 2.5 Gy) and amplification (k) of CD34+ cells after 6 days in a serum free culture medium (SFM) (kCD34+ = 4.3 and 6.3 respectively for 4F and successive 4F + TNF-a/ 4F treatments). In addition, the 4F combination allows culture on pre-established allogenic irradiated stromal cells in vitro at 4 Gy (kCD34+ = 4.5). Overall this study suggests (i) the potential therapeutic interest for an early administration of anti-apoptotic cytokines with or without hematopoiesis inhibitors (emergency cytokine therapy) and (ii) the feasibility in the accidentally irradiated individual, of autologous cell therapy based on ex vivo expansion in order to perform autograft of residual HSPC collected after the accident.  相似文献   

16.
Liu Y  Chen XH  Si YJ  Li ZJ  Gao L  Gao L  Zhang C  Zhang X 《PloS one》2012,7(2):e31741
The hematopoietic inductive microenvironment (HIM) is where hematopoietic stem/progenitor cells grow and develop. Hematopoietic stromal cells were the key components of the HIM. In our previous study, we had successfully cultured and isolated human cord blood-derived stromal cells (HUCBSCs) and demonstrated that they could secret hemopoietic growth factors such as GM-CSF, TPO, and SCF. However, it is still controversial whether HUCBSCs can be used for reconstruction of HIM. In this study, we first established a co-culture system of HUCBSCs and cord blood CD34(+) cells and then determined that using HUCBSCs as the adherent layer had significantly more newly formed colonies of each hematopoietic lineage than the control group, indicating that HUCBSCs had the ability to promote the proliferation of hematopoietic stem cells/progenitor cells. Furthermore, the number of colonies was significantly higher in vascular cell adhesion molecule-1 (VCAM-1)-modified HUCBSCs, suggesting that the ability of HUCBSCs in promoting the proliferation of hematopoietic stem cells/progenitor cells was further enhanced after having been modified with VCAM-1. Next, HUCBSCs were infused into a radiation-damaged animal model, in which the recovery of hematopoiesis was observed. The results demonstrate that the transplanted HUCBSCs were "homed in" to bone marrow and played roles in promoting the recovery of irradiation-induced hematopoietic damage and repairing HIM. Compared with the control group, the HUCBSC group had significantly superior effectiveness in terms of the recovery time for hemogram and myelogram, CFU-F, CFU-GM, BFU-E, and CFU-Meg. Such differences were even more significant in VCAM-1-modified HUCBSCs group. We suggest that HUCBSCs are able to restore the functions of HIM and promote the recovery of radiation-induced hematopoietic damage. VCAM-1 plays an important role in supporting the repair of HIM damage.  相似文献   

17.
Dai B  He J  Chen S  Liu JH  Qin F  Zhu FM  Yan LX 《生理学报》2006,58(5):490-493
为了探讨一氧化氮供体S-亚硝基谷胱甘肽(S—nitrosoglutathione,GSNO)对脐带血CD34^+细胞分化来源的巨三核细胞产生血小板的可能作用,我们采用免疫磁珠法从8例健康产妇足月顺产的胎儿脐带血中分选CD34^+细胞,并在含血小板生成素(thrombopoietin,TPO,50ng/ml)、白细胞介素-3(IL-3,10ng/ml)、干细胞因子(stem cell factor,SCF,50ng/ml)和重组人粒-巨噬细胞刺激因子(rHu GM—CSF,20ng/ml)的无血清培养基中培养14d。随后,用免疫磁珠法分选CD61^+细胞。CD61^+细胞在含有(实验组)和缺乏(对照组)GSNO(20mg/ml)的无血清培养基[含TPO(50ng/ml)、IL-3(10ng/ml)、SCF(50ng/ml)]中培养不同时间(30min、2h)。采用流式细胞仪检测培养体系中的血小板数;电子显微镜观察巨核细胞的形态学;倒置显微镜和流式细胞仪观察凝血酶诱导的血小板凝集;ELISA方法检测巨核细胞中cGMP的含量。结果显示,与对照组比较,实验组血小板数量明显增加(P〈0.05);电子显微镜下可见巨核细胞有明显伪足形成和突出;凝血酶诱导后在倒置显微镜和流式细胞仪上均可观察到血小板凝集现象;GSNO作用后巨核细胞中的cGMP明显升高(P〈0.05)。这些结果提示,GSNO可以促进脐带血CD34^+细胞来源的巨核细胞产生具有一定功能的血小板,其产生的机制可能部分与cGMP途径有关。  相似文献   

18.
Ex vivo culture has been proposed as a means to augment and repair autologous cells in patients with chronic diseases, but the mechanisms governing improvement in cell function are not well understood. Although microRNAs (miRs) are increasingly appreciated as key regulators of cellular function, a role for these factors in CD34+ cell-mediated angiogenesis has not been elucidated. Vascular endothelial growth factor (VEGF) was previously shown to induce expression of certain miRs associated with angiogenesis in endothelial cells and promote survival and number of vascular colony forming units of haematopoietic stem cells (HSCs). We sought to evaluate the role of VEGF in expansion and angiogenic function of CD34+ cells and to identify specific miRs associated with angiogenic properties of expanded cells. Umbilical cord blood CD34+ cells were effectively expanded (18- to 22-fold) in culture medium containing stem cell factor (SCF), Flt-3 ligand (Flt-3), thrombopoietin (TPO) and interleukin-6 (IL-6) with (postEX/+VEGF) and without VEGF (postEX/noVEGF). Tube formation in matrigel assay and tissue perfusion/capillary density in mice ischaemic hindlimb were significantly improved by postEX/+VEGF cells compared with fresh CD34+ and postEX/noVEGF cells. MiR-210 expression was significantly up-regulated in postEX/+VEGF cells. MiR-210 inhibitor abrogated and 210 mimic recapitulated the pro-angiogenic effects by treatment of postEX/+VEGF and postEX/noVEGF cells respectively. Collectively, these observations highlight a critical role for VEGF in enhancing the angiogenic property of expanded cells, and identify miR-210 as a potential therapeutic target to enhance CD34+ stem cell function for the treatment of ischaemic vascular disease.  相似文献   

19.
Ma DC  Jin BQ  Sun YH  Chang KZ  Dai B  Chu JJ  Liu YG 《生理学报》2001,53(4):296-302
为了解胚胎时期巨核细胞增殖分化特有的内在机制,本研究观察了在体外培养体系中,胎肝源CD34+造血干/祖细胞在血小板生成素(thrombopoietin,TPO)作用下增殖分化特征与相关周期蛋白B1、D1和D3表达及细胞内水平变化的关系。结果发现(1)经12d培养后,TPO使胎肝源CD34  相似文献   

20.
The role of IL-7 in lymphoid development and T cell homeostasis has been extensively documented. However, the role of IL-7 in human B cell development remains unclear. We used a xenogeneic human cord blood stem cell/murine stromal cell culture to study the development of CD19+ B-lineage cells expressing the IL-7R. CD34+ cord blood stem cells were cultured on the MS-5 murine stromal cell line supplemented with human G-CSF and stem cell factor. Following an initial expansion of myeloid/monocytoid cells within the initial 2 wk, CD19+/pre-BCR- pro-B cells emerged, of which 25-50% expressed the IL-7R. FACS-purified CD19+/IL-7R+ cells were larger and, when replated on MS-5, underwent a dose-dependent proliferative response to exogenous human IL-7 (0.01-10.0 ng/ml). Furthermore, STAT5 phosphorylation was induced by the same concentrations of human IL-7. CD19+/IL-7R- cells were smaller and did not proliferate on MS-5 after stimulation with IL-7. In a search for cytokines that promote human B cell development in the cord blood stem cell/MS-5 culture, we made the unexpected finding that murine IL-7 plays a role. Murine IL-7 was detected in MS-5 supernatants by ELISA, recombinant murine IL-7 induced STAT5 phosphorylation in CD19+/IL-7R+ pro-B cells and human B-lineage acute lymphoblastic leukemias, and neutralizing anti-murine IL-7 inhibited development of CD19+ cells in the cord blood stem cell/MS-5 culture. Our results support a model wherein IL-7 transduces a replicative signal to normal human B-lineage cells that is complemented by additional stromal cell-derived signals essential for normal human B cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号