首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts of Triticum aestivum (cv. Jinan 177) and protoplasts of Haynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomic in situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion  相似文献   

2.
Since its first development some 40 years ago, the application of the somatic hybridization technique has generated a body of hybrid plant material involving a wide combination of parental species. Until the late 1990s, the technique was ineffective in wheat, as regeneration from protoplasts was proving difficult to achieve. Since this time, however, a successful somatic hybridization protocol for wheat has been established and used to generate a substantial number of both symmetric and asymmetric somatic hybrids and derived materials, especially involving the parental combination bread wheat and tall wheatgrass (Thinopyrum ponticum). This review describes the current state of the art for somatic hybridization in wheat and focuses on its potential application for wheat improvement.  相似文献   

3.
Xin Gao  Shu Wei Liu  Qun Sun  Guang Min Xia 《Planta》2010,231(2):245-250
A symmetric somatic hybridization was performed to combine the protoplasts of tall wheatgrass (Agropyron elongatum) and bread wheat (Triticum aestivum). Fertile regenerants were obtained which were morphologically similar to tall wheatgrass, but which contained some introgression segments from wheat. An SDS-PAGE analysis showed that a number of non-parental high-molecular weight glutenin subunits (HMW-GS) were present in the symmetric somatic hybridization derivatives. These sequences were amplified, cloned and sequenced, to deliver 14 distinct HMW-GS coding sequences, eight of which were of the y-type (Hy1–Hy8) and six x-type (Hx1–Hx6). Five of the cloned HMW-GS sequences were successfully expressed in E. coli. The analysis of their deduced peptide sequences showed that they all possessed the typical HMW-GS primary structure. Sequence alignments indicated that Hx5 and Hy1 were probably derived from the tall wheatgrass genes Aex5 and Aey6, while Hy2, Hy3, Hx1 and Hy6 may have resulted from slippage in the replication of a related biparental gene. We found that both symmetric and asymmetric somatic hybridization could promote the emergence of novel alleles. We discussed the origination of allelic variation of HMW-GS genes in somatic hybridization, which might be the result from the response to genomic shock triggered by the merger and interaction of biparent genomes.  相似文献   

4.
Summary A species-specific, dispersed repetitive DNA sequence was cloned from Nicotiana plumbaginifolia and used in dot blots and in situ hybridizations to analyze asymmetric somatic hybrids of N. tabacum(+)kanamycin-resistant N. plumbaginifolia. Dot blot hybridization data, using the cloned, species-specific repetitive DNA as a probe, showed that some of the hybrids contain only 1%–5% N. plumbaginifolia DNA, whereas others contain 15%–25%. In situ hybridization of the probe to chromosome spreads showed that the extremely asymmetric hybrids retain a single N. plumbaginifolia chromosome; the hybrids with higher dot blot values were found to have 8 to 12 N. plumbaginifolia chromosomes and chromosome fragments. In situ hybridization also revealed translocations between N. plumbaginifolia and N. tabacum chromosomes in 3 of 8 hybrids studied. RFLP analysis using a 5S gene probe showed the presence of N. plumbaginifolia-specific 5S banding patterns in most hybrids examined, including those that retain only a single N. plumbaginifolia chromosome.  相似文献   

5.
Summary Thirteen nuclear asymmetric hybrids were regenerated under selective conditions following fusion of chlorophyll-deficient protoplasts from cultivated tomato (Lycopersicon esculentum Mill.) and -(-irradiated protoplasts from the wild species Lycopersicon peruvianum var. dentatum Dun. All hybrid plants were classified as being asymmetric based on morphological traits, chromosome numbers and isozyme patterns. The majority of the hybrids inherited Lycopersicon peruvianum var. dentatum chloroplasts. Mitochondrial DNA analysis revealed mixed mitochondria populations deriving from both parents in some of the hybrids and rearranged mitochondrial DNA in others. The asymmetric hybrids express some morphological traits that are not found in either of the parental species. Fertile F1 plants were obtained after self-pollination of the asymmetric hybrids in four cases. The results obtained confirm the potential of asymmetric hybridization as a new source of genetic variation, and as a method for transferring of a part of genetic material from donor to recipient, and demonstrate that it is possible to produce fertile somatic hybrids by this technique.  相似文献   

6.

Key message

Fertile hybrids were produced with genetic material transferred from Th. intermedium into a wheat background and supply a source of genetic variation to wheat improvement.

Abstract

Both symmetric and asymmetric somatic hybrids have been obtained from the combination of wheatgrass (Thinopyrum intermedium) and bread wheat (Triticum aestivum). Two wheat protoplast populations, one derived from embryogenic calli and the other from a non-regenerable, rapidly dividing cell line, were fused with Th. intermedium protoplasts which had been (or not been) pre-irradiated with UV. Among the 124 regenerated calli, 64 could be categorized as being of hybrid origin on the basis of plant morphology, peroxidase isozyme, RAPD DNA profiling and karyological analysis. Numerous green plantlets were regenerated from 13 calli recovered from either the symmetric hybrid (no UV pre-treatment) or the asymmetric one (30 s UV irradiation). One of these hybrid plants proved to be vigorous and self-fertile. The regenerants were all closer in phenotype to wheat than to Th. intermedium. Genomic in situ hybridization analysis showed that the chromosomes in the hybrids were largely intact wheat ones, although a few Th. intermedium chromosome fragments had been incorporated within them.  相似文献   

7.

Background  

The wild herb Swertia mussotii is a source of the anti-hepatitis compounds swertiamarin, mangiferin and gentiopicroside. Its over-exploitation has raised the priority of producing these compounds heterologously. Somatic hybridization represents a novel approach for introgressing Swertia mussotii genes into a less endangered species.  相似文献   

8.
Guangmin Xia 《遗传学报》2009,36(9):547-556
Plant somatic hybridization has progressed steadily over the past 35 years. Many hybrid plants have been generated from fusion combinations of different phylogenetic species, some of which have been utilized in crop breeding programs. Among them, asymmetric hybrid, which usually contains a fraction of alien genome, has received more attention because of its importance in crop improvement. However, few studies have dealt with the heredity of the genome of somatic hybrid for a long time, which has limited the progress of this approach. Over recent ten years, along with the development of an effective cytogenetical tool "in situ hybridization (ISH)", asymmetric fusion of common wheat (Triticum aestivum L.) with different grasses or cereals has been greatly developed. Genetics, genomes, functional genes and agricultt, ral traits of wheat asymmetric hybrids have been subject to systematic investigations using gene cloning, genomic in situ hybridization (GISH) and molecular makers. The future goal is to fully elucidate the functional relationships among improved agronomic traits, the genes and underlying molecular mechanisms, and the genome dynamics of somatic introgression lines. This will accelerate the development of elite germplasms via somatic hybridization and the application of these materials in the molecular improvement of crop plants.  相似文献   

9.
Xia Guangmin  Chen Huimin 《Plant science》1996,120(2):13617-203
The suspension derived protoplasts of wheat (Triticum aestivum) cv. Jinan 177 were used as a recipient to fuse with the protoplasts of the 60Co gamma-ray irradiated calli of Legmus chinensis. The wheat suspension cells and their protoplasts were not capable of differentiating to whole plants. The irradiated calli of L. chinensis were also the same. The protoplasts originated from the treated or untreated calli were both unable to divide under the conditions of this experiment. However, the fusion products grew and developed to whole plants which were identified as hybrids according to the analysis of chromosome, isozyme and morphology. The above result revealed that the lost regeneration capacity of both parents could be complementarily restored through somatic hybridization. This phenomenon also occurred with our work on Triticum aestivum (+) Haynaldia villosa, T. aestivum (+) Agropyron elongatum and T. aestivum (+) Psathyrostachys juncea.  相似文献   

10.
11.
Common wheat is one of the most important cereal crops in the world. The improvement of its yield and quality by the introduction of heterologous gene(s) is very significant. Avena sativa L. (2n = 42), belonging to the Avena tribe, possesses resistance to drought, coldness and many dis-eases. Its contents of proteins and fat in seed, especially lysine and unsaturated fatty acid are highest in crops, therefore it is regarded as healthy food. Sexual hybridization between wheat and Avena sativa…  相似文献   

12.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

13.
Summary The organization of the mitochondrial genome and the genotype of the chloroplast genome was characterized using restriction fragment length polymorphisms in a population (82 individuals) of symmetric and asymmetric somatic hybrids of tomato. The protoplast fusion products were regenerated following the fusion of leaf mesophyll protoplasts of Lycopersicon esculentum (tomato cv UC82) with suspension cell protoplasts of L. pennellii that had been irradiated with 5, 10, 15, 25, 50, or 100 kRads from a gamma source. The chloroplast genome in the somatic hybrids showed a random pattern of inheritance, i.e., either parental genome was present in equal numbers of regenerants, while in asymmetric somatic hybrids, the chloroplast genotype reflected the predominant nuclear genotype, i.e., tomato. The mitochondrial genome in the symmetric somatic hybrids showed a non-random pattern of inheritance, i.e., predominantly from the L. pennellii parent; asymmetric somatic hybrids had more tomato-specific mitochondrial sequences than symmetric somatic hybrids. The non-random inheritance of the chloroplast and mitochondrial DNA in these tomato protoplast fusion products appears to be influenced by the nuclear background of the regenerant.  相似文献   

14.
Deng J  Cui H  Zhi D  Zhou C  Xia G 《Plant cell reports》2007,26(8):1233-1241
Callus-derived protoplasts of common wheat (Triticum aestivum L. cv. Hesheng 3) irradiated with ultraviolet light were fused by using the PEG method with cell suspension-derived protoplasts of Arabidopsis thaliana. Regenerated calli and green plants resembling that of wheat were obtained. The hybrid nature of putative calli and plants were confirmed by isozyme, random amplified polymorphic DNA and genomic in situ hybridization (GISH) analyses. GISH results indicated that 1∼3 small chromosome fragments of A. thaliana were found introgression into the terminals of wheat chromosomes, forming highly asymmetric hybrids. Cytoplasmic genome tests did not show any cytoplasmic genetic materials from A. thaliana. However, variations from the normal wheat cytoplasmic genome were found, indicating recombination or rearrangement occurred during the process of somatic hybridization. The chromosome elimination in the asymmetric somatic hybridization of remote phylogenetic relationship was discussed. A miniature inverted-repeat transposable element related sequence was found by chance in the hybrids which might accompany and impact the process of somatic hybridization. Jingyao Deng and Haifeng Cui provided same contribution to this work.  相似文献   

15.
16.
Summary Slow-growing interspecific heterokaryons were isolated on minimal medium following the induced fusion of protoplasts from auxotrophic mutants of Penicillium chrysogenum and Penicillium cyaneo-fulvum. After 5–7 days cultivation the heterokaryons produced vigorously growing sectors which on transfer gave genetically stable colonies. Cultivation of these colonies on a complete medium supplemented with p-fluorophenylalanine or benomyl broke down this stability and several different prototrophic and auxotrophic colony types were isolated. Many of these behaved as diploids or aneuploids showing sectoring either spontaneously, or in the presence of an haploidizing agent. Some of the latter isolates were recombinants for parental spore colour and auxotrophic markers.  相似文献   

17.
Sexual polyploidization has both a theoretical as well as an applied significance. Morphological screening for large pollen grains and shape of pollen produced by the individual, cytological investigation of hybrid progeny, and unbalanced separation of chromosomes at anaphase I in pollen mother cells were used to detect the gametes with somatic chromosome number in Fuchsia. The interspecific hybrids of F. fulgens (sect. Ellobium) × F. magellanica (sect. Quelusia), F. fulgens (sect. Ellobium) × F. splendens (sect. Ellobium), and F. triphylla (sect. Fuchsia) × F. splendens (sect. Ellobium) produced at the University of Auckland, New Zealand, showed both large and normal pollen grains in the same anther indicating the presence of unreduced gametes. Cytological investigation carried out on the hybrid progeny of F. fulgens (diploid, 2n=22, sect. Ellobium) × F. magellanica (tetraploid, 2n=44, sect. Quelusia) and F. triphylla (diploid, sect. Fuchsia) × F. arborescens (diploid, sect. Schufia) revealed unexpected chromosome numbers of 2n=44 and 2n=33, respectively. In general, the hybrids showed low fertility caused by genetically unbalanced gametes resulted from random disjunction of chromosomes at anaphase I. Studies on meiosis together with the presence of different shapes and sizes of pollen grains in Fuchsia proved indirectly that unreduced gametes are the products of first division meiotic nuclear restitution. These unreduced gametes were viable irrespective of pollen shape, their predominance in the hybrids, nuclear DNA amount and species phylogenetic position.  相似文献   

18.
Cui H  Yu Z  Deng J  Gao X  Sun Y  Xia G 《Planta》2009,229(2):323-330
Regenerates were obtained following somatic hybridization between tall wheatgrass (Agropyron elongatum) and bread wheat (Triticum aestivum cv. Jinan177) protoplasts. Two lines (CU and XI) were self-fertile in the first (R0) and subsequent (R1 and R2) generations. The phenotype of each R1 population was uniform. All CU progeny were phenotypically similar to the tall wheatgrass parent, while XI progeny had thinner, smoother and softer leaves. Cytological analysis showed that more wheat chromatin was present in the hybrid callus than in the R1 and R2 plants, and that some intercalary translocations of wheat chromosome segments were retained in the R2 generation. AFLP profiling confirmed the presence of wheat DNA in the introgression lines. Analysis of the high molecular weight glutenin subunit content of derived seed identified three novel subunits, not present in either the wheat or the tall wheatgrass parent. Microsatellite-based profiling of the chloroplast genome of the introgression lines suggested that only chloroplast sequences from the tall wheatgrass parent were present. The specifically inherited phenomena and possible application of these hybrids are discussed. Haifeng Cui and Zhiyong Yu were contributed equally to this article.  相似文献   

19.
Suspension-derived protoplasts of Agropyron elongatum irradiated by ultra-violet light (UV) were fused with the suspension-derived protoplasts of Triticum astivum using PEG. Fertile intergeneric somatic hybrid plants were produced and various hybrid lines have been selected and propagated in successive generations. Their hybrid nature was confirmed by analysis of profiles of isozymes, RAPDs, and 5S rDNA spacer sequences, and via GISH analysis. By the procedure described, the phenotype and chromosome number of wheat could be maintained besides transfer of a few chromosomes and chromosomal fragments from the donor A. elongatum. The results above indicated that highly asymmetric fertile hybrid plants and hybrid progenies of wheat were produced via somatic hybridization.  相似文献   

20.
Summary Mesophyll protoplasts of tomato (Lycopersicon esculentum Mill. var. cerasiforme) and of an atrazine-resistant biotype of black nightshade, (Solanum nigrum L.), were fused by using polyethylene glycol/dimethyl sulfoxide (PEG/DMSO) solution and three somatic hybrid plants, each derived from a separate callus, were recovered. A twostep selection system was used: (1) protoplast culture medium (modified 8E) in which only tomato protoplasts formed calluses; and (2) regeneration medium (MS2Z) on which only S. nigrum calluses produced shoots. These selective steps were augmented by early isozyme analysis of putative hybrid shoots still in vitro. Phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT) mapped to five loci on four chromosomes in tomato confirmed the hybrid nature of the nuclei of regenerated shoots. The somatic hybrid plants had simple leaves, and intermediate flower and bud morphology, but anthesis was reduced to 5% due to premature bud abscission and the pollen grains were non-viable. Southern DNA blot hybridization using a pea 45 S ribosomal RNA gene probe reconfirmed the hybrid nature of the nuclear genome of the three plants. A 32P-labeled probe of Oenothera chloroplast DNA (cpDNA) hybridized to cpDNA restricted with EcoRI or EcoRV indicated the presence of the tomato cpDNA pattern in all three hybrids. Likewise, the plants were all found to be atrazine sensitive. Analysis with two mitochondrial (mt)DNA-specific probes, maize cytochrome oxidase subunit II and PmtSylSa8 from Nicotiana sylvestris, showed that, in addition to typical mitochondrial rearrangements, specific bands of both parents were present or missing in each somatic hybrid plant.Michigan Agricultural Experiment Station Journal Article No. 12433  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号