首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the functional level, the majority of human leukocyte antigen (HLA) class I MHC variants can be classified into about ten different major groups, or supertypes, characterized by overlapping peptide binding motifs and repertoires. Previous studies have detailed the peptide binding specificity of the HLA A2, A3, B7, and B44 supertypes, and predicted, on the basis of MHC pocket structures, known motifs, or the sequence of T cell epitopes, the existence of the HLA A1 and A24 supertypes. Direct experimental validation of the A1 and A24 supertypes, however, has been lacking. In the current study, the peptide-binding repertoires and main anchor specificities of several common HLA A molecules (A*0101, A*2301, A*2402, A*2601, A*2902, and A*3002) predicted to be members of the A1 or A24 supertypes were analyzed and defined using single amino acid substituted peptides and a large peptide library. Based on the present findings, the A1 supertype includes A*0101, A*2601, A*2902, and A*3002, whereas the A24 supertype includes A*2301 and A*2402. Interestingly, A*2902 is associated with a motif and peptide binding repertoire that overlaps significantly with those of all of the A1- and A24-supertype molecules studied, representing—to our knowledge—the first report of significant cross-reactivity among molecules belonging to different supertypes.  相似文献   

2.

Background  

MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions.  相似文献   

3.
Barth E 《Spatial Vision》2000,13(2-3):193-199
As opposed to dealing with the geometry of objects in the 3D world, this paper considers the geometry of the visual input itself, i.e. the geometry of the spatio-temporal hypersurface defined by image intensity as a function of two spatial coordinates and time. The results show how the Riemann curvature tensor of this hypersurface represents speed and direction of motion, and thereby allows to predict global motion percepts and properties of MT neurons. It is argued that important aspects of early and middle level visual coding may be understood as resulting from basic geometric processing of the spatio-temporal visual input. Finally, applications show that the approach can improve the computation of motion.  相似文献   

4.
Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL.  相似文献   

5.
Rearrangements of bacterial chromosomes can be studied mathematically at several levels, most prominently at a local, or sequence level, as well as at a topological level. The biological changes involved locally are inversions, deletions, and transpositions, while topologically they are knotting and catenation. These two modelling approaches share some surprising algebraic features related to braid groups and Coxeter groups. The structural approach that is at the core of algebra has long found applications in sciences such as physics and analytical chemistry, but only in a small number of ways so far in biology. And yet there are examples where an algebraic viewpoint may capture a deeper structure behind biological phenomena. This article discusses a family of biological problems in bacterial genome evolution for which this may be the case, and raises the prospect that the tools developed by algebraists over the last century might provide insight to this area of evolutionary biology.  相似文献   

6.
Binding of short antigenic peptides to major histocompatibility complex (MHC) molecules is a core step in adaptive immune response. Precise identification of MHC-restricted peptides is of great significance for understanding the mechanism of immune response and promoting the discovery of immunogenic epitopes. However, due to the extremely high MHC polymorphism and huge cost of biochemical experiments, there is no experimentally measured binding data for most MHC molecules. To address the problem of predicting peptides binding to these MHC molecules, recently computational approaches, called pan-specific methods, have received keen interest. Pan-specific methods make use of experimentally obtained binding data of multiple alleles, by which binding peptides (binders) of not only these alleles but also those alleles with no known binders can be predicted. To investigate the possibility of further improvement in performance and usability of pan-specific methods, this article extensively reviews existing pan-specific methods and their web servers. We first present a general framework of pan-specific methods. Then, the strategies and performance as well as utilities of web servers are compared. Finally, we discuss the future direction to improve pan-specific methods for MHC-peptide binding prediction.  相似文献   

7.
8.
In this study, the reactions of N-acetyl-L-methionine (AcMet) with [{trans-PtCl(NH3)2}2-μ-H2N(CH2)6NH2](NO3)2 (BBR3005: 1,1/t,t 1) and its cis analog [{cis-PtCl(NH3)2}2-μ-{H2N(CH2)6NH2}]Cl2 (1,1/c,c 2) were analyzed to determine the rate and reaction profile of chloride substitution by methionine sulfur. The reactions were studied in PBS buffer at 37°C by a combination of multinuclear (195Pt, {1H-15N} HSQC) magnetic resonance (NMR) spectroscopy and electrospray ionization time of flight mass spectrometry (ESITOFMS). The diamine linker of the 1,1/t,t trans complex was released as a result of the trans influence of the coordinated sulfur atom, producing trans-[PtCl(AcMet)(NH3)2]+ (III) and trans-[Pt(AcMet)2(NH3)2]2+ (IV). In contrast the cis geometry of the dinuclear compound maintained the diamine bridge intact and a number of novel dinuclear platinum compounds obtained by stepwise substitution of sulfur on both platinum centers were identified. These include (charges omitted for clarity): [{cis-PtCl(NH3)2}-μ-NH2(CH2)6NH2-{cis-Pt(AcMet)(NH3)2}] (V); [{cis-Pt(AcMet)(NH3)2}2-μ-NH2(CH2)6NH2] (VI); [{cis-PtCl(NH3)2}-μ-NH2(CH2)6NH2-{PtCl(AcMet)NH3] (VII); [{PtCl(AcMet)(NH3)}2-μ-NH2(CH2)6NH2] (VIII); [{trans-Pt(AcMet)2(NH3)}-μ-NH2(CH2)6NH2-{PtCl(AcMet)(NH3)] (IX) and the fully substituted [{trans-Pt(AcMet)2(NH3)}2-μ-{NH2(CH2)6NH2] (X). For both compounds the reactions with methionine were slower than those with glutathione (Inorg Chem 2003, 42:5498–5506). Further, the 1,1/c,c geometry resulted in slower reaction than the trans isomer, because of steric hindrance of the bridge, as observed previously in reactions with DNA and model nucleotides.  相似文献   

9.
10.
Acute and lethal ileitis can be elicited in certain strains of inbred mice after oral infection with the intracellular protozoan parasite Toxoplasma gondii. The development of this inflammatory process is dependent upon the induction of a robust Th1 response, including overproduction of IFN-gamma, TNF-alpha, and NO, as has been reported in other experimental models of human inflammatory bowel disease. In this study we have investigated the role of CD4(+) T cells from the lamina propria (LP) in the early inflammatory events after T. gondii infection using isolated and primary cultured intestinal cells from infected mice and immortalized mouse mIC(cl2) intestinal epithelial cells. Primed LP CD4(+) T cells isolated from parasite-infected mice produce substantial quantities of both IFN-gamma and TNF-alpha. IFN-gamma- and TNF-alpha-producing LP CD4(+) T cells synergize with infected mIC(cl2) and enhance the production of several inflammatory chemokines including macrophage-inflammatory protein-2, monocyte chemoattractant protein-1, monocyte chemoattractant protein-3, macrophage-inflammatory protein-1alphabeta, and IFN-gamma-inducible protein-10. Furthermore, primed LP CD4(+) T cells cocultured with infected mIC(cl2) inhibited replication of the parasite in the intestinal epithelial cells. Thus, LP CD4(+) T cells can interact with parasite-infected intestinal epithelial cells and alter the expression of several proinflammatory products that have been associated with the development of intestinal inflammation. The interaction between these two components of the gut mucosal compartment (CD4(+) T cells and enterocytes) may play a role in the immunopathogenesis of this pathogen-driven experimental inflammatory bowel disease model.  相似文献   

11.
Seven novel pyrazolone derivatives were synthesized and characterized by 1H NMR and 13C NMR spectra, mass spectra, infrared spectra and elemental analysis. Their terbium complexes were prepared and characterized by elemental analysis, EDTA titrimetric analysis, UV/vis spectra, infrared spectra and molar conductivity, as well as thermal analysis. The fluorescence properties and fluorescence quantum yields of the complexes were investigated at room temperature. The results indicated that pyrazolone derivatives had good energy‐transfer efficiency for the terbium ion. All the terbium complexes emitted green fluorescence characteristic of terbium ions, possessed strong fluorescence intensity, and showed relatively high fluorescence quantum yields. Cyclic voltammograms of the terbium complexes were studied and the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) energy levels of these complexes were estimated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Dexamethasone-receptor complexes from HeLa cell cytosol sediment at 7.4S in low salt sucrose gradients, and at 3.8S in high salt gradients. If cytosol is heated at 25 degrees C, receptor complexes sediment at 6.9S in low salt, and at 3.6S in high salt gradients. RNase A treatment at 25 degrees C, instead, results in receptor complexes which sediment in low salt gradients as two major forms at 6.5 and 4.8S. Receptor complexes from RNase A-treated cytosols sediment as their counterparts from untreated cytosols in high salt gradients. Although the shift in sedimentation properties of receptor complexes at 2 degrees C is induced by RNase A, and not by other low molecular weight basic proteins or RNase T1, the effect can be also obtained by inactive RNase A. The catalytically active enzyme, however, is required to observe 6.5 and 4.8S complexes after cytosol incubations at 25 degrees C. Placental ribonuclease inhibitor prevents the appearance of RNase A-induced receptor forms at 25 degrees C, but not at 2 degrees C. Moreover, this inhibitor can prevent the 7.4 to 6.9S shift in sedimentation coefficient of receptor complexes caused by cytosol heating. Dexamethasone-receptor complexes from HeLa cell cytosol show low levels of binding to DNA-cellulose, and heating at 25 degrees C is required to observe a six-fold increase in DNA binding levels. RNase A treatment of cytosols at 2 degrees C does not result in significant enhancement in receptor complex binding to DNA. If RNase A treatment is carried out at 25 degrees C, however, DNA binding levels of receptor complexes increased by 25% over the values observed with control heated cytosol. This effect cannot be observed if RNase T1 substitutes for RNase A. Placental ribonuclease inhibitor can prevent the temperature-dependent increase in DNA binding properties of dexamethasone-receptor complexes either in the presence or absence of exogenous RNase A. These findings indicate that exogenous RNases can perturb the structure of dexamethasone-receptor complexes without being involved in the transformation process.  相似文献   

13.
Electrometric and spectrophotometric titrations showed vancomycin to contain groups having pK values of about 2.9, 7.2, 8.6, 9.6, 10.5 and 11.7. Of these the four last-named were phenolic. Titration above pH11 and below pH1 was irreversible and antibiotic potency was destroyed. Combination with the specific peptide diacetyl-l-lysyl-d-alanyl-d-alanine hindered the titration of the first three phenolic groups. Spectrophotometric titration of iodovancomycin showed that the phenolic group with pK 9.6 was the one iodinated. The stability of the vancomycin–peptide complex in the range pH1–13 showed that complex-formation occurred only when carboxyl groups were ionized and the phenolic groups were non-ionized. The complex was formed in concentrations of urea up to 8m, of potassium chloride up to 4m, of sodium dodecyl sulphate up to 1%, and at temperatures up to 60°C. From titration curves, organic chlorine and iodine analysis, and combination with peptide, a minimum molecular weight for vancomycin of 1700–1800 was estimated. Optical-rotatory-dispersion and circular-dichroism experiments suggested that vancomycin has only limited conformational flexibility. Both vancomycin and its complexes with peptide exhibited properties suggesting aggregation. Vancomycin and iodovancomycin can be fractionated into a main fraction and at least three minor components. The isolation of these fractions salt-free is described and their antibiotic properties are shown to correlate with their ability to form complexes with peptide.  相似文献   

14.
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle.  相似文献   

15.
16.
J Sgi  A Szemz  J Szcsi    L Otvs 《Nucleic acids research》1990,18(8):2133-2140
We report here spectroscopic and biochemical data of a novel series of sugar-modified oligodeoxy-nucleotides, the carbocyclic oligothymidylates, c(dT)3-20. In c(dT)n a methylene group has been substituted for the oxygen atom of the deoxyribose ring of the natural thymidylate unit. c(dT)10-20 form helical structures, in contrast with oligothymidylates or poly(dT), based on absorbance versus temperature melting profiles. Secondary structure of c(dT)n, where n greater than 10 is assumed to be double helix. In addition to this, c(dT)n forms as a stable duplex with complementary poly(dA) as does parent (dT)n. On the other hand, c(dT)n-containing oligo/poly duplex is nearly inactive either as a template or as a primer in various DNA polymerase systems, and c(dT)n inhibits DNA replication as well. c(dT)n can efficiently be extended by terminal transferase and shows an increased nuclease stability compared to (dT)n. Base-pairing ability and nuclease stability of c(dT)n suggest that (+)-carbocyclic nucleoside-containing oligomers could be new potential antisense oligodeoxynucleotides.  相似文献   

17.
Tong Y  Guan H  Wang S  Xu J  He C 《Carbohydrate research》2011,346(4):495-500
A novel chitin derivative, cholesteryl chitin carbonate (Chitin-Chol), was synthesized from chitin and cholesteryl chloroformate. This product was characterized by Fourier transform infrared (FTIR) spectroscopy and solid-state 13C nuclear magnetic resonance (13C NMR), and was used as a covalently bound template precursor for imprinting cholesterol. After cross-linking with toluene 2,4-diisocyanate, it was efficiently cleaved hydrolytically to afford a guest-binding site accompanying the easy and efficient removal of a sacrificial spacer. The selectivity and efficacy of a chitin-based imprinting polymer for steroid binding were assessed by a chromatographic screening process. The results of binding experiments showed that this molecular imprinting polymer (MIP) has a high binding capacity with cholesterol. The target discrimination towards cholesterol over its close structural analogue suggested that the polymer recognition site was possible on the basis of the inversion of configuration of a single hydroxyl group. In addition, non-covalent imprinting was done using chitin as a precursor and its binding properties for cholesterol were also evaluated.  相似文献   

18.
We present a model for flicker phosphenes, the spontaneous appearance of geometric patterns in the visual field when a subject is exposed to diffuse flickering light. We suggest that the phenomenon results from interaction of cortical lateral inhibition with resonant periodic stimuli. We find that the best temporal frequency for eliciting phosphenes is a multiple of intrinsic (damped) oscillatory rhythms in the cortex. We show how both the quantitative and qualitative aspects of the patterns change with frequency of stimulation and provide an explanation for these differences. We use Floquet theory combined with the theory of pattern formation to derive the parameter regimes where the phosphenes occur. We use symmetric bifurcation theory to show why low frequency flicker should produce hexagonal patterns while high frequency produces pinwheels, targets, and spirals.  相似文献   

19.
H Krakauer 《Biopolymers》1971,10(12):2459-2490
The binding of Mg ++ to polyadenylate (poly A), Polyuridylate(poly U), and their complexes, poly (A + U) and poly (A + 2U), was studied by means of a technique in which the dye eriochrome black T is used to measure the concentration of free Mg?. The apparent binding constant KX = [MgN]/[Mg++][N], N = site for Mg++ binding (the phosphate group of the nucleotide), was found to decrease rapidly as the extent of binding increased and, at low extents of binding, as the concentration of Na? increased in poly A, poly (A + U), and poly (A + 2U), and somewhat less so in poly U. Kx is generally in the range 104 > KX > 102. The cause of these dependences is apparently, primarily, the displacement of Na+ by Mg++ in poly U and poly (A + U) on the basis of the similarity of extents of displacement measured in this work and those measured potentiometrically. was calculated and was found to approach zero as the concentration of Na+ increased. In poly U, poly (A + U), and poly (A + 2U) at low ΔH′ v.H. > 0, about + 2 kcal/“mole.” In poly A, also at low salt, ΔH′ v.H. ≈ ?4 kcal/“mol” for the initial binding of Mg++, and increases to +2 kcal/“mol” at saturation. This enthalpic variation probably accounts for the anticooperativity in the binding of Mg++ not ascribable to the displacement of Na++.  相似文献   

20.
We describe the generation of three mAbs that recognize the complex of the class II MHC molecule IEk bound to a peptide derived from the carboxyl terminus of moth cytochrome c (residues 95-103). Reactivities of these mAbs are sensitive to single alterations in the sequence of both helices of the MHC molecule and to the bound peptide. The epitopes of these reagents are distinct but overlap substantially. One of these mAbs specifically blocks lymphokine release by T cells responsive to this complex but not others. We have used another to examine how the number of complexes on an APC is related to its ability to stimulate T cells. We find that 200-400 complexes per cell are necessary and sufficient to induce a degree of stimulation, whereas maximum stimulation is achieved only if more than 5000 complexes are present. The analysis indicates that T cell activation is a stochastic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号