首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One- and two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2 with substrate analogs bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine. The interactions between the inhibitor and the enzyme were localized by comparison of the two-dimensional NOE spectra recorded for the enzyme-inhibitor complex using both protonated and selectively deuterated inhibitors. These experiments led us to the following conclusions for the phospholipase-A2-micelle complex: (i) the 38-kDa phospholipase A2 complex gives NMR spectra with relatively narrow lines, which is indicative of high mobility of the enzyme; (ii) the residues Ala1, Trp3, Phe63 and Tyr69 located in the interface recognition site, as well as Phe22, Tyr75, Phe106 and Tyr111 are involved in the micelle-binding process; (iii) when present on the micelle, phospholipase A2 is stereospecific for the inhibitor binding; (iv) the inhibitor, (R)-dodecyl-2-aminohexanol-1-phosphoglycol, binds stoichiometrically to phospholipase A2 with high affinity (Kd less than or equal to 10 microM); (v) the inhibitor binds in the active site of the enzyme, which is evidenced by large chemical-shift differences for Phe5, Ile9, Phe22, His48, Tyr52 and Phe106; (vi) the acyl chain of the inhibitor makes hydrophobic contacts (less than 0.4 nm) near Phe5, Ile9, Phe22 and Phe106. Comparison of our results on the enzyme-inhibitor-micelle ternary complex with the crystal structure of the enzyme-inhibitor complex [Thunnissen, M. M. G. M., AB, E., Kalk, K. H., Drenth, J., Dijkstra, B. W., Kuipers, O. P., Dijkman, R., de Haas, G. H. & Verheij, H. M. (1990) Nature 347, 689-691] shows that the mode of inhibitor binding is similar.  相似文献   

2.
Several short-chain asymmetric lecithins with a total of 14 carbons in the acyl chains (ranging from 1-lauroyl-2-acetylphosphatidylcholine to 1-hexanoyl-2-octanoylphosphatidylcholine) have been synthesized and characterized. The specific activities of phospholipase A2 from cobra venom, phospholipase A2 from porcine pancreas, and phospholipase C from Bacillus cereus toward these lecithins as micelles have been determined. The results of these kinetic studies allow the definition of hydrophobic binding requirements in the active sites of these water-soluble phospholipases. For phospholipase C, with the exception of monomyristoylphosphatidylcholine, each of the asymmetric short-chain lecithins exhibits high activity, comparable to the 14-carbon symmetric short-chain species, diheptanoylphosphatidylcholine. Therefore, for phospholipase C, in addition to the acyl linkages, only a certain degree of hydrophobicity in the fatty acyl chains is requisite for substrate binding and appreciable hydrolysis; there is no chain specificity. The activity of phospholipase A2 from cobra venom toward the same asymmetric lecithins is quite different. As the sn-2 chain lengthens, activity is increased to a maximum for diheptanoyl-PC. Further increase in the number of carbons in the sn-2 chain has no effect on hydrolysis rates. For this enzyme, seven carbons in the sn-2 chain are necessary for optimal activity. In contrast, porcine pancreatic phospholipase A2 activity shows very little dependence on sn-2 chain length.  相似文献   

3.
Human plasma platelet activating factor acetylhydrolase (pPAF-AH) is a phospholipase A(2) that specifically hydrolyzes the sn-2 ester of platelet activating factor (PAF) and of phospholipids with oxidatively truncated sn-2 fatty acyl chains. pPAF-AH is bound to lipoproteins in vivo, and it binds essentially irreversibly to anionic and zwitterionic phospholipid vesicles in vitro and hydrolyzes PAF and PAF analogues. Substrate hydrolysis also occurs in the absence of vesicles, with a maximum rate reached at the critical micelle concentration. A novel pre-steady-state kinetic analysis with enzyme tightly bound to vesicles and with a substrate that undergoes slow intervesicle exchange establishes that pPAF-AH accesses its substrate from the aqueous phase and thus is not an interfacial enzyme. Such a mechanism readily explains why this enzyme displays dramatic specificity for phospholipids with short sn-2 chains or with medium-length, oxidatively truncated sn-2 chains since a common feature of these lipids is their relatively high water solubility. It also explains why the enzymatic rate drops as the length of the sn-1 chain is increased. pPAF-AH shows broad specificity toward phospholipids with different polar headgroups. Additional results are that PAF undergoes intervesicle exchange on the subminute time scale and it does not undergo transbilayer movement over tens of minutes.  相似文献   

4.
In an attempt to investigate systematically the effects of various single and multiple cis carbon-carbon double bonds in the sn-2 acyl chains of natural phospholipids on membrane properties, we have de novo synthesized unsaturated C20 fatty acids comprised of single or multiple methylene-interrupted cis double bonds. Subsequently, 15 molecular species of phosphatidylethanolamine (PE) with sn-1 C20-saturated and sn-2 C20-unsaturated acyl chains were semi-synthesized by acylation of C20-lysophosphatidylcholine with unsaturated C20 fatty acids followed by phospholipase D-catalyzed base-exchange reaction in the presence of excess ethanolamine. The gel-to-liquid crystalline phase transitions of these 15 mixed-chain PE, in excess H2O, were investigated by high resolution differential scanning calorimetry. In addition, the energy-minimized structures of these sn-1 C20-saturated/sn-2 C20-unsaturated PE were simulated by molecular mechanics calculations. It is shown that the successive introduction of cis double bonds into the sn-2 acyl chain of C(20):C(20)PE can affect the gel-to-liquid crystalline phase transition temperature, Tm, of the lipid bilayer in some characteristic ways; moreover, the effect depends critically on the position of cis double bonds in the sn-2 acyl chain. Specifically, we have constructed a novel Tm diagram for the 15 species of unsaturated PE, from which the effects of the number and the position of cis double bonds on Tm can be examined simultaneously in a simple, direct, and unifying manner. Interestingly, the characteristic Tm profiles exhibited by different series of mixed-chain PE with increasing degree of unsaturation can be interpreted in terms of structural changes associated with acyl chain unsaturation.  相似文献   

5.
To understand the role of the ester moiety of the sn-1 acyl chain in phospholipase A2-glycerophospholipid interactions, we introduced an additional methylene residue between the glycerol C1 and C2 carbon atoms of phosphatidylcholines, and then studied the kinetics of hydrolysis and the binding of such butanetriol-containing phospholipids with Naja naja phospholipase A2. Hydrolysis was monitored by using phospholipids containing a NBD-labelled sn-2 acyl chain and binding was ascertained by measuring the protein tryptophan fluorescence. The hydrolysis of butanetriol-containing phospholipids was invariably slower than that of the glycerol-containing phospholipids. In addition, the enzyme binding with the substrate was markedly decreased upon replacing the glycerol residue with the 1,3,4-butanetriol moiety in phosphatidylcholines. These results have been interpreted to suggest that the sn-1 ester group in glycerophospholipids could play an important role in phospholipase A2-phospholipid interactions.  相似文献   

6.
The phosphatidylinositol transfer protein isolated from brain, liver, heart and platelets was found to be present in two subforms which could be distinguished on the basis of the isoelectric points. In this study we have demonstrated that the two subforms isolated from bovine brain are due to the presence of either phosphatidylinositol or phosphatidylcholine in the lipid binding site of the protein. The transfer protein accommodates one phosphatidylinositol molecule in the binding site. The binding site for the sn-2 fatty acyl chain was investigated by incorporating in the transfer protein either phosphatidylinositol or phosphatidylcholine carrying a parinaroyl-chain attached at the sn-2 position. Time-resolved fluorescence spectroscopy revealed that the sn-2 fatty acyl chains for both phospholipids in the lipid-protein complex were completely immobilized (i.e., rotational correlation times of 17.4 ns for phosphatidylcholine and 16.3 ns for phosphatidylinositol). The similarity in correlation times suggests that the sn-2 fatty acyl chains of both phospholipids are accommodated in the same hydrophobic binding site of the protein.  相似文献   

7.
The pem1/cho2 pem2/opi3 double mutant of Saccharomyces cerevisiae, which is auxotrophic for choline because of the deficiency in methylation activities of phosphatidylethanolamine, grew in the presence of 0.1 mM dioctanoyl-phosphatidylcholine (diC(8)PC). Analysis of the metabolism of methyl-(13)C-labeled diC(8)PC ((methyl-(13)C)(3)-diC(8)PC) by electrospray ionization tandem mass spectrometry (ESI-MS/MS) revealed that it was rapidly converted to (methyl-(13)C)(3)-PCs containing C16 or C18 acyl chains. (Methyl-(13)C)(3)-8:0-lyso-PC, (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC, which are the probable intermediate molecular species of acyl chain remodeling, appeared immediately after 5 min of pulse-labeling and decreased during the subsequent chase period. These results indicate that diC(8)PC was taken up by the pem1 pem2 double mutant and that the acyl chains of diC(8)PC were exchanged with longer yeast fatty acids. The temporary appearance of (methyl-(13)C)(3)-8:0-lyso-PC suggests that the remodeling reaction may consist of deacylation and reacylation by phospholipase activities and acyltransferase activities, respectively. The detailed analyses of the structures of (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC by MS/MS and MS(3) strongly suggest that most (methyl-(13)C)(3)-8:0-16:0-PCs have a C16:0 acyl chain at sn-1 position, whereas (methyl-(13)C)(3)-8:0-16:1-PCs have a C16:1 acyl chain at either sn-1 or sn-2 position in a similar frequency, implying that the initial C16:0 acyl chain substitution prefers the sn-1 position; however, the C16:1 acyl chain substitution starts at both sn-1 and sn-2 positions. The current study provides a pivotal insight into the acyl chain remodeling of phospholipids in yeast.  相似文献   

8.
Host response to invasion by many gram-negative bacteria depends upon activation of Toll-like receptor 4 (TLR4) by endotoxin presented as a monomer bound to myeloid differentiation factor 2 (MD-2). Metabolic labeling of hexaacylated endotoxin (LOS) from Neisseria meningitidis with [(13)C]acetate allowed the use of NMR to examine structural properties of the fatty acyl chains of LOS present in TLR4-agonistic and -antagonistic binary and ternary complexes with, respectively, wild-type or mutant (F126A) MD-2 ± TLR4 ectodomain. Chemical shift perturbation indicates that Phe(126) affects the environment and/or position of each of the bound fatty acyl chains both in the binary LOS·MD-2 complex and in the ternary LOS·MD-2·TLR4 ectodomain complex. In both wild-type and mutant LOS·MD-2 complexes, one of the six fatty acyl chains of LOS is more susceptible to paramagnetic attenuation, suggesting protrusion of that fatty acyl chain from the hydrophobic pocket of MD-2, independent of association with TLR4. These findings indicate that re-orientation of the aromatic side chain of Phe(126) is induced by binding of hexaacylated E, preceding interaction with TLR4. This re-arrangement of Phe(126) may act as a "hydrophobic switch," driving agonist-dependent contacts needed for TLR4 dimerization and activation.  相似文献   

9.
Cutinase from Fusarium solani is a lipolytic enzyme that hydrolyses triglycerides efficiently. All the inhibited forms of lipolytic enzymes described so far are based on the use of small organophosphate and organophosphonate inhibitors, which bear little resemblance to a natural triglyceride substrate. In this article we describe the crystal structure of cutinase covalently inhibited by (R)-1,2-dibutyl-carbamoylglycero-3-O-p-nitrophenylbutyl-phos phonate, a triglyceride analogue mimicking the first tetrahedral intermediate along the reaction pathway. The structure, which has been solved at 2.3 A, reveals that in both the protein molecules of the asymmetric unit the inhibitor is almost completely embedded in the active site crevice. The overall shape of the inhibitor is that of a fork: the two dibutyl-carbamoyl chains point towards the surface of the protein, whereas the butyl chain bound to the phosphorous atom is roughly perpendicular to the sn-1 and sn-2 chains. The sn-3 chain is accommodated in a rather small pocket at the bottom of the active site crevice, thus providing a structural explanation for the preference of cutinase for short acyl chain substrates.  相似文献   

10.
Mixed acyl chain phosphatidylcholine molecules in Triton N-101 micelles were employed as substrates for lipoprotein lipase to test which substrate acyl chain has the greatest effect on activation of the enzyme by apolipoprotein C-II. The phospholipase A1 activity of lipoprotein lipase was measured by pH-stat. The activation factor (lipoprotein lipase activity plus apolipoprotein C-II/activity minus apolipoprotein C-II) increased monotonically with apolipoprotein C-II concentration up to 1 microM apolipoprotein C-II at an enzyme concentration of 0.01 microM. The maximal activation factor for phosphatidylcholine substrate molecules with sn-2 acyl chain lengths of 14 averages 14.8. By contrast, for sn-2 acyl chain lengths of 16 the activation factor was 29.2. Varying the sn-1 acyl chain length had no significant effect on the activation factor. The chain-length dependence of the activation factor is similar with the apolipoprotein C-II peptide fragment comprising residues 56-79, which does not include the lipid-binding region of apolipoprotein C-II. These data are consistent with a model for activation of lipoprotein lipase in which residues 56-79 bind to lipoprotein lipase and alter the interaction of the sn-2 acyl chain of the phosphatidylcholine (PC) substrate or the lysoPC product within the activated state complex.  相似文献   

11.
Palmitic acid specifically deuterated at different carbon atoms, has been incorporated biosynthetically into the membrane lipids of Clostridium butyricum. The lipids of this organism are rich in plasmalogens and their glycerol acetals and exhibit an unusual fatty acyl and alkenyl chain distribution with saturated chains mainly at the sn-2 position and unsaturated chains at the sn-1 position. The ordering of the deuterated hydrocarbon chains in whole cells was measured with deuterium nuclear magnetic resonance and was compared to the order profiles of isolated cell membranes and membranes formed from the total phospholipid extract. The shape of the order profiles was similar for all three membranes, but the absolute values of the order profiles in whole cells and isolated membranes were lower than those of the liposomal lipids. The order profiles have the same characteristic shape as those found for the lamellar liquid-crystalline phases of synthetic diacylphospholipids.  相似文献   

12.
The phosphatidylcholine (PC)-preferring phospholipase C (PLC) from Bacillus cereus (PLC(Bc)) hydrolyzes various 1,2-diacyl derivatives of PC at different rates. Substrates with side chains having eight or more carbons are present in micellular form in aqueous media and are processed most rapidly. The catalytic efficiency (k(cat)/K(m)) for the hydrolyses of short-chain PCs at concentrations below their respective critical micelle concentrations also decreases as the side chains become shorter, and this loss of efficiency owes its origin to increases in K(m). In order to ascertain whether the observed increases in K(m) might arise from conformational changes in the glycerol backbone, nuclear magnetic resonance (NMR) experiments were performed in D(2)O to determine the (3)J(HH) and (3)J(CH) coupling constants along the glycerol subunit of 1, 2-dipropanoyl-sn-glycero-3-phosphocholine (K(m)=61 mM), 1, 2-dibutanoyl-sn-glycero-3-phosphocholine (K(m)=21.2 mM) and 1, 2-dihexanoyl-sn-glycero-3-phosphocholine (K(m)=2.4 mM). Using these coupling constants, the fractional populations for each rotamer about the backbone of each of substrate were calculated. Two rotamers, which were approximately equally populated, about the sn-1-sn-2 bond of each substrate were significantly preferred, and in these conformers, the oxygens on the sn-1 and sn-2 carbons of the backbone were synclinal to optimize intramolecular hydrophobic interactions between the acyl side chains. There was greater flexibility about the sn-2-sn-3 bond, and each of the three possible staggered conformations was significantly populated, although there was a slight preference for the rotamer in which the oxygen bearing the phosphate head group was synclinal to the oxygen at the sn-2 carbon and to the sn-1 carbon; in this orientation, the head group is folded back relative to the side chains. These studies demonstrate that there is no significant change in the conformation about the glycerol backbone as a function of side chain length in short-chain phospholipids. Thus, prior organization of the substrate seems an unlikely determinant of the catalytic efficiency of PLC(Bc), and other factors such as hydrophobic interactions or differential solvation/desolvation effects associated with the complexation of the substrate with PLC(Bc) may be involved.  相似文献   

13.
Recent work within our laboratory has focused on the enzymes we hypothesize are involved in the biosynthesis of bis(monoacylglycerol)phosphate from phosphatidylglycerol. Here we describe a transacylase, active at acidic pH values, isolated from a macrophage-like cell line, RAW 264.7. This enzyme acylates the head group glycerol of sn-3:sn-1' lysophosphatidylglycerol to form sn-3:sn-1' bis(monoacylglycerol)phosphate. Here we demonstrate that this enzyme uses two lysophosphatidylglycerol molecules, one as an acyl donor and another as an acyl acceptor, and that the acyl contributions from all other lipids tested are comparatively minor. This enzyme prefers saturated acyl chains to monounsaturates, 16 and 18 carbon fatty acids over 14 carbon fatty acids, and saturated acyl chains at the sn-1 position to monounsaturated acyl chains on the sn-2 carbon of lysophosphatidylglycerol. We present data which show the transacylase activity depends on the presence of a lipid-water interface and the lipid polymorphic state.  相似文献   

14.
Min JH  Wilder C  Aoki J  Arai H  Inoue K  Paul L  Gelb MH 《Biochemistry》2001,40(15):4539-4549
Platelet-activating factor acetylhydrolases (PAF-AHs) are a group of enzymes that hydrolyze the sn-2 acetyl ester of PAF (phospholipase A(2) activity) but not phospholipids with two long fatty acyl groups. Our previous studies showed that membrane-bound human plasma PAF-AH (pPAF-AH) accesses its substrate only from the aqueous phase, which raises the possibility that this enzyme can hydrolyze a variety of lipid esters that are partially soluble in the aqueous phase. Here we show that pPAF-AH has broad substrate specificity in that it hydrolyzes short-chain diacylglycerols, triacylglycerols, and acetylated alkanols, and displays phospholipase A(1) activity. On the basis of all of the substrate specificity results, it appears that the minimal structural requirement for a good pPAF-AH substrate is the portion of a glyceride derivative that includes an sn-2 ester and a reasonably hydrophobic chain in the position occupied by the sn-1 chain. In vivo, pPAF-AH is bound to high and low density lipoproteins, and we show that the apparent maximal velocity for this enzyme is not influenced by lipoprotein binding and that the enzyme hydrolyzes tributyroylglycerol as well as the recombinant pPAF-AH does. Broad substrate specificity is also observed for the structurally homologous PAF-AH which occurs intracellularly [PAF-AH(II)] as well as for the PAF-AH from the lower eukaryote Physarum polycephalum although pPAF-AH and PAF-AH(II) tolerate the removal of the sn-3 headgroup better than the PAF-AH from P. polycephalum does. In contrast, the intracellular PAF-AH found in mammalian brain [PAF-AH(Ib) alpha 1/alpha 1 and alpha 2/alpha 2 homodimers] is more selectively operative on compounds with a short acetyl chain although this enzyme also displays significant phospholipase A(1) activity.  相似文献   

15.
Dimyristoylphosphatidylcholine (DMPC), selectively deuterated in the sn-2 chain at the 3, 6, and 10 positions is used to probe DMPC-cholesterol interactions in multilamellar dispersions. Using the Raman spectral linewidths of the 2100 cm-1 C2H2 stretching modes as an index of membrane disorder, we demonstrate that cholesterol tends to order, or increase the number of trans carbon-carbon bonds within the DMPC acyl chain near the headgroup region at all temperatures. At low temperatures, cholesterol disorders the acyl chains near the methyl termini by inducing gauche conformers; cholesterol orders the entire chain at higher temperatures. These determinations are qualitatively consistent with conclusions drawn from deuterium nuclear magnetic resonance studies, but specifically reflect acyl chain trans/gauche isomerization on the 10(-12)-10(-13) s vibrational time scale.  相似文献   

16.
Human acyloxyacyl hydrolase (AOAH) is a leukocyte enzyme that hydrolyzes acyloxyacyl bonds in the lipid A region of bacterial lipopolysaccharide (LPS), thereby detoxifying the LPS. We report here that the enzyme also acts in vitro on glycerophospholipids, lysophospholipids, and diacylglycerol. While AOAH preferentially removes palmitate or stearate from the sn-1 position of phospholipid and diacylglycerol substrates that have unsaturated acyl chains in the sn-2 position, it is able to cleave both palmitates from sn-1,2-dipalmitoylphosphatidylcholine and sn-1,2-dipalmitoylglycerol. This apparent preference for removing saturated (or shorter) acyl chains from glycerolipids is consistent with its ability to cleave laurate more rapidly than palmitoleate from lipopolysaccharide (Erwin, A. L., and Munford, R. S. (1990) J. Biol. Chem. 265, 16444-16449). AOAH also catalyzes acyl transfer from LPS and phosphatidylethanolamine to acceptor lipids; approximately equal amounts of laurate and myristate are transferred from LPS to monooleoylglyceryl ether, forming acyloleoylglyceryl ether. The demonstration that AOAH has phospholipase, lysophospholipase, diacylglycerol lipase, and acyltransferase activities in vitro suggests that the enzyme may have roles in addition to LPS deacylation (detoxification) in phagocytic cells.  相似文献   

17.
Cholesterol in human bile is solubilized in micelles by (relatively hydrophobic) bile salts and phosphatidylcholine (unsaturated acyl chains at sn-2 position). Hydrophilic tauroursodeoxycholate, dipalmitoyl phosphatidylcholine, and sphingomyelin all decrease cholesterol crystal-containing zones in the equilibrium ternary phase diagram (van Erpecum, K. J., and M. C. Carey. 1997. Biochim. Biophys. Acta. 1345: 269-282) and thus could be valuable in gallstone prevention. We have now compared crystallization in cholesterol-supersaturated model systems (3.6 g/dl, 37 degrees C) composed of various bile salts as well as egg yolk phosphatidylcholine (unsaturated acyl chains at sn-2 position), dipalmitoyl phosphatidylcholine, or sphingomyelin throughout the phase diagram. At low phospholipid contents [left two-phase (micelle plus crystal-containing) zone], tauroursodeoxycholate, dipalmitoyl phosphatidylcholine, and sphingomyelin all enhanced crystallization. At pathophysiologically relevant intermediate phospholipid contents [central three-phase (micelle plus vesicle plus crystal-containing) zone], tauroursodeoxycholate inhibited, but dipalmitoyl phosphatidylcholine and sphingomyelin enhanced, crystallization. Also, during 10 days of incubation, there was a strong decrease in vesicular cholesterol contents and vesicular cholesterol-to-phospholipid ratios (approximately 1 on day 10), coinciding with a strong increase in crystal mass. At high phospholipid contents [right two-phase (micelle plus vesicle-containing) zone], vesicles were always unsaturated and crystallization did not occur. Strategies aiming to increase amounts of hydrophilic bile salts may be preferable to increasing saturated phospholipids in bile, because the latter may enhance crystallization.  相似文献   

18.
A detailed structure/function analysis of the substrate specificity of Escherichia coli sn-1,2-diacylglycerol kinase was performed with three goals in mind: (a) to define the substrate specificity; (b) to discover inhibitors; and (c) to elucidate the specificity of diacylglycerol-dependent inactivation. Forty-seven structural analogues of sn-1,2-diacylglycerol were prepared and examined as substrates, inhibitors, and irreversible inactivators of the enzyme using mixed micellar assay methods. Modification of the acyl chains or the sn-2 ester affected the apparent Km but had only small effects on Vm; modifications of the sn-1 ester, sn-3 methylene, or sn-3 hydroxyl had large effects on the apparent Vm and smaller effects on Km. Consistent with these observations, diacylglycerol analogues modified only in the acyl chains or sn-2 ester were not diacylglycerol kinase inhibitors, whereas analogues with substitutions of the sn-1 ester or sn-3 hydroxyl frequently caused inhibition. A hydrogen bond-donating group was required for an analogue to be a diacylglycerol kinase inhibitor. Studies of diacylglycerol kinase inactivation by the various analogues were consistent with the previous conclusion that this process involves an interaction of diacylglycerols with an enzyme conformation different from that active in catalysis (Walsh, J. P., and Bell, R. M. (1986) J. Biol. Chem. 261, 15062-15069). Studies with a water-soluble diacylglycerol, sn-1,2-dibutyrylglycerol, allowed direct comparison of diacylglycerol kinase activity in mixed micelles with that in native membranes. The results are discussed in relation to the structural requirements of other diacylglycerol-dependent enzymes.  相似文献   

19.
A series of structurally modified phospholipids have been used to delineate the structural features involved in the interaction between cobra venom (Naja naja naja) phospholipase A2 and its substrate. Special emphasis has been placed on sn-2 amide analogues of the phospholipids. These studies have led to a very potent, reversible phospholipase A2 inhibitor. A six-step synthesis of this compound, 1-palmitylthio-2-palmitoylamino-1,2-dideoxy-sn-glycero-3- phosphorylethanolamine (thioether amide-PE), was developed. Other analogues studied included 1-palmitylthio-2-palmitoylamino-1,2-dideox-sn- glycero-3-phosphorylcholine, 1-palmityl-2-palmitoylamino-2- deoxy-sn-glycero-3-phosphorylcholine, 1-palmitoyl-2-palmitoylamino-2-deoxy-sn-glycero-3- phosphorylcholine, 1-palmitylthio- 2([(tetradecyloxy)carbonyl]amino)-1,2-dideoxy-sn-glycero-3- phosphorylcholine, 1-palmitoyl- 2([(octadecylylamino)carbonyl]amino)-2-deoxy-sn-glycero-3- phosphorylcholine, and sphingomyelin. Inhibition studies used the well defined Triton X-100 mixed micelle system and the spectroscopic thio assay. The phospholipid analogues showed varying degrees of inhibition. The best inhibitor was the thioether amide-PE which had an IC50 of 0.45 microM. In contrast, sphingomyelin, a natural phospholipid that resembles the amide analogues, did not inhibit but rather activated phosphatidylcholine hydrolysis. This systematic study of phospholipase A2 inhibition led to the following conclusions about phospholipid-phospholipase A2 interactions: (i) sn-2 amide analogues bind tighter than natural phospholipids, presumably because the amide forms a hydrogen bond with the water molecule in the enzyme active site, stabilizing its binding. (ii) Inhibitor analogues containing the ethanolamine polar head group appear to be more potent inhibitors than those containing the choline group. This difference in potency may be due solely to the fact that the cobra venom phospholipase A2 is activated by choline-containing phospholipids. Thus, choline-containing non-hydrolyzable analogues both inhibit and activate this enzyme. Both of these effects must be taken into account when studying phosphatidylcholine inhibitors of the cobra venom enzyme. (iii) The potency of inhibition of these analogues is significantly enhanced by increasing the hydrophobicity of the sn-1 functional group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We have studied the properties of the fatty acyl binding sites of the phosphatidylinositol transfer protein (PI-TP) from bovine brain, by measuring the binding and transfer of pyrenylacyl-containing phosphatidylinositol (PyrPI) species and pyrenylacyl-containing phosphatidylcholine (PyrPC) species as a function of the acyl chain length. The PyrPI species carried a pyrene-labeled acyl chain of variable length in the sn-2 position and either palmitic acid [C(16)], palmitoleic acid [C(16:1)], or stearic acid [C(18:1)] in the sn-1 position. Binding and transfer of the PI species increased in the order C(18) less than C(16) less than C(16:1), with a distinct preference for those species that carry a pyrenyloctanoyl [Pyr(8)] or a pyrenyldecanoyl [Pyr(10)] chain. The PyrPC species studied consisted of two sets of positional isomers: one set contained a pyrenylacyl chain of variable length and a C(16) chain, and the other set contained an unlabeled chain of variable length and a Pyr(10) chain. The binding and transfer experiments showed that PI-TP discriminates between positional isomers with a preference for the species with a pyrenylacyl chain in the sn-1 position. This discrimination is interpreted to indicate that separate binding sites exist for the sn-1 and sn-2 acyl chains. From the binding and transfer profiles it is apparent that the binding sites differ in their preference for a particular acyl chain length. The binding and transfer vs chain length profiles were quite similar for C(16)Pyr(x)PC and C(16)Pyr(x)PI species, suggesting that the sn-2 acyl chains of PI and PC share a common binding site in PI-TP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号