首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The regular segregation of achiasmate chromosomes in Drosophila melanogaster females is ensured by two distinct segregational systems. The segregation of achiasmate homologs is assured by the maintenance of heterochromatic pairing; while the segregation of heterologous chromosomes is ensured by a separate mechanism that may not require physical association. Axs(D) (Aberrant X segregation) is a dominant mutation that specifically impairs the segregation of achiasmate homologs; heterologous achiasmate segregations are not affected. As a result, achiasmate homologs frequently participate in heterologous segregations at meiosis I. We report the isolation of two intragenic revertants of the Axs(D) mutation (Axs(r2) and Axs(r3)) that exhibit a recessive meiotic phenotype identical to that observed in Axs(D)/Axs(D) females. A third revertant (Axs(r1)) exhibits no meiotic phenotype as a homozygote, but a meiotic defect is observed in Axs(r1)/Axs(r2) females. Therefore mutations at the Axs(D) locus define a gene necessary and specific for homologous achiasmate segregation during meiosis. We also characterize the interactions of mutations at the Axs locus with two other meiotic mutations (ald and ncd). Finally, we propose a model in which Axs(+) is required for the normal separation of paired achiasmate homologs. In the absence of Axs(+) function, the homologs are often unable to separate from each other and behave as a single segregational unit that is free to segregate from heterologous chromosomes.  相似文献   

3.
In Drosophila oocytes, euchromatic homolog-homolog associations are released at the end of pachytene, while heterochromatic pairings persist until metaphase I. A screen of 123 autosomal deficiencies for dominant effects on achiasmate chromosome segregation has identified a single gene that is haplo-insufficient for homologous achiasmate segregation and whose product may be required for the maintenance of such heterochromatic pairings. Of the deficiencies tested, only one exhibited a strong dominant effect on achiasmate segregation, inducing both X and fourth chromosome nondisjunction in FM7/X females. Five overlapping deficiencies showed a similar dominant effect on achiasmate chromosome disjunction and mapped the haplo-insufficient meiotic gene to a small interval within 66C7-12. A P-element insertion mutation in this interval exhibits a similar dominant effect on achiasmate segregation, inducing both high levels of X and fourth chromosome nondisjunction in FM7/X females and high levels of fourth chromosome nondisjunction in X/X females. The insertion site for this P element lies immediately upstream of CG18543, and germline expression of a UAS-CG18543 cDNA construct driven by nanos-GAL4 fully rescues the dominant meiotic defect. We conclude that CG18543 is the haplo-insufficient gene and have renamed this gene matrimony (mtrm). Cytological studies of prometaphase and metaphase I in mtrm hemizygotes demonstrate that achiasmate chromosomes are not properly positioned with respect to their homolog on the meiotic spindle. One possible, albeit speculative, interpretation of these data is that the presence of only a single copy of mtrm disrupts the function of whatever "glue" holds heterochromatically paired homologs together from the end of pachytene until metaphase I.  相似文献   

4.
Heterochromatic homology ensures the segregation of achiasmate chromosomes during meiosis I in Drosophila melanogaster females, perhaps as a consequence of the heterochromatic threads that connect achiasmate homologs during prometaphase I. Here, we ask how these threads, and other possible heterochromatic entanglements, are resolved prior to anaphase I. We show that the knockdown of Topoisomerase II (Top2) by RNAi in the later stages of meiosis results in a specific defect in the separation of heterochromatic regions after spindle assembly. In Top2 RNAi-expressing oocytes, heterochromatic regions of both achiasmate and chiasmate chromosomes often failed to separate during prometaphase I and metaphase I. Heterochromatic regions were stretched into long, abnormal projections with centromeres localizing near the tips of the projections in some oocytes. Despite these anomalies, we observed bipolar spindles in most Top2 RNAi-expressing oocytes, although the obligately achiasmate 4th chromosomes exhibited a near complete failure to move toward the spindle poles during prometaphase I. Both achiasmate and chiasmate chromosomes displayed defects in biorientation. Given that euchromatic regions separate much earlier in prophase, no defects were expected or observed in the ability of euchromatic regions to separate during late prophase upon knockdown of Top2 at mid-prophase. Finally, embryos from Top2 RNAi-expressing females frequently failed to initiate mitotic divisions. These data suggest both that Topoisomerase II is involved in the resolution of heterochromatic DNA entanglements during meiosis I and that these entanglements must be resolved in order to complete meiosis.  相似文献   

5.
We have examined the female meiotic behaviour of three X chromosomes which have large deletions of the basal heterochromatin in Drosophila melanogaster. We find that most of this heterochromatin can be removed without substantially altering pairing and segregation of the two Xs. To compare the role of heterochromatin in male meiosis we have constructed individuals which carry two extra identical heterochromatic mini X chromosomes. These minis behave as univalents even though their heterochromatin is known to contain satellite DNA. We conclude therefore that this satellite DNA is not sufficient to allow effectively normal meiotic behaviour. In all other respects our results in the male extend and confirm Cooper's postulate that there exist specific pairing sites in the X heterochromatin. Thus we find no support in either female or male meiosis for the concept that satellite DNA is involved in meiotic chromosome pairing of either a chiasmate or an achiasmate kind.  相似文献   

6.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

7.
The conserved kinase Mps1 is necessary for the proper functioning of the mitotic and meiotic spindle checkpoints (MSCs), which monitor the integrity of the spindle apparatus and prevent cells from progressing into anaphase until chromosomes are properly aligned on the metaphase plate. In Drosophila melanogaster, a null allele of the gene encoding Mps1 was recently shown to be required for the proper functioning of the MSC, but it did not appear to exhibit a defect in female meiosis. We demonstrate here that the meiotic mutant ald1 is a hypomorphic allele of the mps1 gene. Both ald1 and a P-insertion allele of mps1 exhibit defects in female meiotic chromosome segregation. The observed segregational defects are substantially more severe for pairs of achiasmate homologs, which are normally segregated by the achiasmate (or distributive) segregation system, than they are for chiasmate bivalents. Furthermore, cytological analysis of ald1 mutant oocytes reveals both a failure in the coorientation of achiasmate homologs at metaphase I and a defect in the maintenance of the chiasmate homolog associations that are normally observed at metaphase I. We conclude that Mps1 plays an important role in Drosophila female meiosis by regulating processes that are especially critical for ensuring the proper segregation of nonexchange chromosomes.  相似文献   

8.
Drosophila melanogaster oocytes heterozygous for mutations in the alpha-tubulin 67C gene (alphatub67C) display defects in centromere positioning during prometaphase of meiosis I. The centromeres do not migrate to the poleward edges of the chromatin mass, and the chromatin fails to stretch during spindle lengthening. These results suggest that the poleward forces acting at the kinetochore are compromised in the alphatub67C mutants. Genetic studies demonstrate that these mutations also strongly and specifically decrease the fidelity of achiasmate chromosome segregation. Proper centromere orientation, chromatin elongation, and faithful segregation can all be restored by a decrease in the amount of the Nod chromokinesin. These results suggest that the accurate segregation of achiasmate chromosomes requires the proper balancing of forces acting on the chromosomes during prometaphase.  相似文献   

9.
In Drosophila oocytes achiasmate homologs are faithfully segregated to opposite poles at meiosis I via a process referred to as achiasmate homologous segregation. We observed that achiasmate homologs display dynamic movements on the meiotic spindle during mid-prometaphase. An analysis of living prometaphase oocytes revealed both the rejoining of achiasmate X chromosomes initially located on opposite half-spindles and the separation toward opposite poles of two X chromosomes that were initially located on the same half spindle. When the two achiasmate X chromosomes were positioned on opposite halves of the spindle their kinetochores appeared to display proper co-orientation. However, when both Xs were located on the same half spindle their kinetochores appeared to be oriented in the same direction. Thus, the prometaphase movement of achiasmate chromosomes is a congression-like process in which the two homologs undergo both separation and rejoining events that result in the either loss or establishment of proper kinetochore co-orientation. During this period of dynamic chromosome movement, the achiasmate homologs were connected by heterochromatic threads that can span large distances relative to the length of the developing spindle. Additionally, the passenger complex proteins Incenp and Aurora B appeared to localize to these heterochromatic threads. We propose that these threads assist in the rejoining of homologs and the congression of the migrating achiasmate homologs back to the main chromosomal mass prior to metaphase arrest.  相似文献   

10.
A model system for increased meiotic nondisjunction in older oocytes   总被引:2,自引:0,他引:2  
For at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency with maternal age. Despite the clinical importance of age-dependent nondisjunction in humans, the underlying mechanisms remain largely unexplained. Efforts to recapitulate age-dependent nondisjunction in a mammalian experimental system have so far been unsuccessful. Here we provide evidence that Drosophila is an excellent model organism for investigating how oocyte aging contributes to meiotic nondisjunction. As in human oocytes, nonexchange homologs and bivalents with a single distal crossover in Drosophila oocytes are most susceptible to spontaneous nondisjunction during meiosis I. We show that in a sensitized genetic background in which sister chromatid cohesion is compromised, nonrecombinant X chromosomes become vulnerable to meiotic nondisjunction as Drosophila oocytes age. Our data indicate that the backup pathway that normally ensures proper segregation of achiasmate chromosomes deteriorates as Drosophila oocytes age and provide an intriguing paradigm for certain classes of age-dependent meiotic nondisjunction in humans.  相似文献   

11.
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12–13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.  相似文献   

12.
Chiasmata established by recombination are normally sufficient to ensure accurate chromosome segregation during meiosis by physically interlocking homologs until anaphase I. Drosophila melanogaster female meiosis is unusual in that it is both exceptionally tolerant of nonexchange chromosomes and competent in ensuring their proper segregation. As first noted by Puro and Nokkala [Puro, J., Nokkala, S., 1977. Meiotic segregation of chromosomes in Drosophila melanogaster oocytes. A cytological approach. Chromosoma 63, 273-286], nonexchange chromosomes move precociously towards the poles following formation of a bipolar spindle. Indeed, metaphase arrest has been previously defined as the stage at which nonexchange homologs are symmetrically positioned between the main chromosome mass and the poles of the spindle. Here we use studies of both fixed images and living oocytes to show that the stage in which achiasmate chromosomes are separated from the main mass does not in fact define metaphase arrest, but rather is a component of an extended prometaphase. At the end of prometaphase, the nonexchange chromosomes retract into the main chromosome mass, which is tightly repackaged with properly co-oriented centromeres. This repackaged state is the true metaphase arrest configuration in Drosophila female meiosis.  相似文献   

13.
M E Zwick  J L Salstrom  C H Langley 《Genetics》1999,152(4):1605-1614
Genetic variation in nondisjunction frequency among X chromosomes from two Drosophila melanogaster natural populations is examined in a sensitized assay. A high level of genetic variation is observed (a range of 0.006-0.241). Two naturally occurring variants at the nod locus, a chromokinesin required for proper achiasmate chromosome segregation, are significantly associated with an increased frequency of nondisjunction. Both of these polymorphisms are found at intermediate frequency in widely distributed natural populations. To account for these observations, we propose a general model incorporating unique opportunities for meiotic drive during female meiosis. The oötid competition model can account for both high mean rates of female-specific nondisjunction in Drosophila and humans as well as the standing genetic variation in this critical fitness character in natural populations.  相似文献   

14.
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores.  相似文献   

15.
BACKGROUND: The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. RESULTS: A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. CONCLUSIONS: The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages.  相似文献   

16.
S E Bickel  D P Moore  C Lai  T L Orr-Weaver 《Genetics》1998,150(4):1467-1476
The Drosophila mei-S332 and ord gene products are essential for proper sister-chromatid cohesion during meiosis in both males and females. We have constructed flies that contain null mutations for both genes. Double-mutant flies are viable and fertile. Therefore, the lack of an essential role for either gene in mitotic cohesion cannot be explained by compensatory activity of the two proteins during mitotic divisions. Analysis of sex chromosome segregation in the double mutant indicates that ord is epistatic to mei-S332. We demonstrate that ord is not required for MEI-S332 protein to localize to meiotic centromeres. Although overexpression of either protein in a wild-type background does not interfere with normal meiotic chromosome segregation, extra ORD+ protein in mei-S332 mutant males enhances nondisjunction at meiosis II. Our results suggest that a balance between the activity of mei-S332 and ord is required for proper regulation of meiotic cohesion and demonstrate that additional proteins must be functioning to ensure mitotic sister-chromatid cohesion.  相似文献   

17.
Normally, meiotic crossovers in conjunction with sister-chromatid cohesion establish a physical connection between homologs that is required for their accurate segregation during the first meiotic division. However, in some organisms an alternative mechanism ensures the proper segregation of bivalents that fail to recombine. In Drosophila oocytes, accurate segregation of achiasmate homologs depends on pairing that is mediated by their centromere-proximal heterochromatin. Our previous work uncovered an unexpected link between sister-chromatid cohesion and the fidelity of achiasmate segregation when Drosophila oocytes are experimentally aged. Here we show that a weak mutation in the meiotic cohesion protein ORD coupled with a reduction in centromere-proximal heterochromatin causes achiasmate chromosomes to missegregate with increased frequency when oocytes undergo aging. If ORD activity is more severely disrupted, achiasmate chromosomes with the normal amount of pericentric heterochromatin exhibit increased nondisjunction when oocytes age. Significantly, even in the absence of aging, a weak ord allele reduces heterochromatin-mediated pairing of achiasmate chromosomes. Our data suggest that sister-chromatid cohesion proteins not only maintain the association of chiasmate homologs but also play a role in promoting the physical association of achiasmate homologs in Drosophila oocytes. In addition, our data support the model that deterioration of meiotic cohesion during the aging process compromises the segregation of achiasmate as well as chiasmate bivalents.  相似文献   

18.
Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males   总被引:5,自引:5,他引:0       下载免费PDF全文
McKee B 《Genetics》1984,106(3):403-422
In Drosophila melanogaster males, deficiency for X heterochromatin causes high X-Y nondisjunction and skewed sex chromosome segregation ratios (meiotic drive). Y and XY classes are recovered poorly because of sperm dysfunction. In this study it was found that X heterochromatic deficiencies disrupt recovery not only of the Y chromosome but also of the X and autosomes, that both heterochromatic and euchromatic regions of chromosomes are affected and that the "sensitivity" of a chromosome to meiotic drive is a function of its length. Two models to explain these results are considered. One is a competitive model that proposes that all chromosomes must compete for a scarce chromosome-binding material in Xh(-) males. The failure to observe competitive interactions among chromosome recovery probabilities rules out this model. The second is a pairing model which holds that normal spermiogenesis requires X-Y pairing at special heterochromatic pairing sites. Unsaturated pairing sites become gametic lethals. This model fails to account for autosomal sensitivity to meiotic drive. It is also contradicted by evidence that saturation of Y-pairing sites fails to suppress meiotic drive in Xh(- ) males and that extra X-pairing sites in an otherwise normal male do not induce drive. It is argued that meiotic drive results from separation of X euchromatin from X heterochromatin.  相似文献   

19.
Mutations in the aberrant X segragation (Axs) gene disrupt the segregation of achiasmate chromosomes during female meiosis in Drosophila melanogaster. We show that Axs encodes the founding member of an eukaryotic family of transmembrane proteins. Axs protein colocalizes with components of the endoplasmic reticulum and is present within a structure ensheathing the meiotic spindle. In both meiotic and mitotic cells, Axs is recruited to the microtubules of assembling spindles. We propose that Axs and the sheath represent novel mediators of meiotic spindle assembly and chromosome segregation.  相似文献   

20.
Tomkiel JE  Wakimoto BT  Briscoe A 《Genetics》2001,157(1):273-281
In recombination-proficient organisms, chiasmata appear to mediate associations between homologs at metaphase of meiosis I. It is less clear how homolog associations are maintained in organisms that lack recombination, such as male Drosophila. In lieu of chiasmata and synaptonemal complexes, there must be molecules that balance poleward forces exerted across homologous centromeres. Here we describe the genetic and cytological characterization of four EMS-induced mutations in teflon (tef), a gene involved in this process in Drosophila melanogaster. All four alleles are male specific and cause meiosis I-specific nondisjunction of the autosomes. They do not measurably perturb sex chromosome segregation, suggesting that there are differences in the genetic control of autosome and sex chromosome segregation in males. Meiotic transmission of univalent chromosomes is unaffected in tef mutants, implicating the tef product in a pairing-dependent process. The segregation of translocations between sex chromosomes and autosomes is altered in tef mutants in a manner that supports this hypothesis. Consistent with these genetic observations, cytological examination of meiotic chromosomes suggests a role of tef in regulating or mediating pairing of autosomal bivalents at meiosis I. We discuss implications of this finding in regard to the evolution of heteromorphic sex chromosomes and the mechanisms that ensure chromosome disjunction in the absence of recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号