首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Olfactory neuroepithelium (ONe) is unique because it contains progenitor cells capable of mitotic division that replace damaged or lost neurons throughout life. We isolated populations of ONe progenitors from adult cadavers and patients undergoing nasal sinus surgery that were heterogeneous and consisted of neuronal and glial progenitors. Progenitor lines have been obtained from these cultures that continue to divide and form nestin positive neurospheres. In the present study, we used clonal and population analyses to probe the self-renewal and multipotency of the neurosphere forming cells (NSFCs). NSFCs plated at the single cell level produced additional neurospheres; dissociation of these spheres resulted in mitotically active cells that continued to divide and produce spheres as long as they were subcultured. The mitotic activity of clonal NSFCs was assessed using bromodeoxyuridine (BrdU) incorporation. Lineage restriction of the clonal cultures was determined using a variety of antibodies that were characteristic of different levels of neuronal commitment: β-tubulin isotype III, neural cell adhesion molecule (NCAM) and microtubule associated protein (MAP2), or glial restriction: astrocytes, glial fibrillary acidic protein (GFAP); and oligodendrocytes, galactocerebroside (GalC). Furthermore, nestin expression, a marker indicative of progenitor nature, decreased in defined medium compared to serum-containing medium. Therefore, adult human ONe-derived neural progenitors retain their capacity for self-renewal, can be clonally expanded, and offer multipotent lineage restriction. Therefore, they are a unique source of progenitors for future cell replacement strategies in the treatment of neurotrauma and neurodegenerative diseases.  相似文献   

3.
Olfactory neuroepithelium (ONe) is unique because it contains progenitor cells capable of mitotic division that replace damaged or lost neurons throughout life. We isolated populations of ONe progenitors from adult cadavers and patients undergoing nasal sinus surgery that were heterogeneous and consisted of neuronal and glial progenitors. Progenitor lines have been obtained from these cultures that continue to divide and form nestin positive neurospheres. In the present study, we used clonal and population analyses to probe the self-renewal and multipotency of the neurosphere forming cells (NSFCs). NSFCs plated at the single cell level produced additional neurospheres; dissociation of these spheres resulted in mitotically active cells that continued to divide and produce spheres as long as they were subcultured. The mitotic activity of clonal NSFCs was assessed using bromodeoxyuridine (BrdU) incorporation. Lineage restriction of the clonal cultures was determined using a variety of antibodies that were characteristic of different levels of neuronal commitment: β-tubulin isotype III, neural cell adhesion molecule (NCAM) and microtubule associated protein (MAP2), or glial restriction: astrocytes, glial fibrillary acidic protein (GFAP); and oligodendrocytes, galactocerebroside (GalC). Furthermore, nestin expression, a marker indicative of progenitor nature, decreased in defined medium compared to serum-containing medium. Therefore, adult human ONe-derived neural progenitors retain their capacity for self-renewal, can be clonally expanded, and offer multipotent lineage restriction. Therefore, they are a unique source of progenitors for future cell replacement strategies in the treatment of neurotrauma and neurodegenerative diseases.  相似文献   

4.
Clonal analysis of adult human olfactory neurosphere forming cells.   总被引:3,自引:0,他引:3  
Olfactory neuroepithelium (ONe) is unique because it contains progenitor cells capable of mitotic division that replace damaged or lost neurons throughout life. We isolated populations of ONe progenitors from adult cadavers and patients undergoing nasal sinus surgery that were heterogeneous and consisted of neuronal and glial progenitors. Progenitor lines have been obtained from these cultures that continue to divide and form nestin positive neurospheres. In the present study, we used clonal and population analyses to probe the self-renewal and multipotency of the neurosphere forming cells (NSFCs). NSFCs plated at the single cell level produced additional neurospheres; dissociation of these spheres resulted in mitotically active cells that continued to divide and produce spheres as long as they were subcultured. The mitotic activity of clonal NSFCs was assessed using bromodeoxyuridine (BrdU) incorporation. Lineage restriction of the clonal cultures was determined using a variety of antibodies that were characteristic of different levels of neuronal commitment: ss-tubulin isotype III, neural cell adhesion molecule (NCAM) and microtubule associated protein (MAP2), or glial restriction: astrocytes, glial fibrillary acidic protein (GFAP); and oligodendrocytes, galactocerebroside (GalC). Furthermore, nestin expression, a marker indicative of progenitor nature, decreased in defined medium compared to serum-containing medium. Therefore, adult human ONe-derived neural progenitors retain their capacity for self-renewal, can be clonally expanded, and offer multipotent lineage restriction. Therefore, they are a unique source of progenitors for future cell replacement strategies in the treatment of neurotrauma and neurodegenerative diseases.  相似文献   

5.
In the adult rodent brain, the subventricular zone (SVZ) represents a special niche for neural stem cells; these cells proliferate and generate neural progenitors. Most of these migrate along the rostral migratory stream to the olfactory bulb, where they differentiate into interneurons. SVZ-derived progenitors can also be recruited spontaneously to damaged brain areas to replace lost cells, including oligodendrocytes in demyelinated lesions. In this study, we searched for factors able to enhance this spontaneous recruitment of endogenous progenitors. Previous studies have suggested that epidermal growth factor (EGF) could stimulate proliferation, migration, and glial differentiation of SVZ progenitors. In the present study we examined EGF influence on endogenous SVZ cell participation to brain repair in the context of demyelinated lesions. We induced a focal demyelinated lesion in the corpus callosum by lysolecithin injection and showed that intranasal heparin-binding epidermal growth factor (HB-EGF) administration induces a significant increase in SVZ cell proliferation together with a stronger SVZ cell mobilization toward the lesions. Besides, HB-EGF causes a shift of SVZ-derived progenitor cell differentiation toward the astrocytic lineage. However, due to the threefold increase in cell recruitment by EGF treatment, the absolute number of SVZ-derived oligodendrocytes in the lesion of treated mice is higher than in controls. These results suggest that enhancing SVZ cell proliferation could be part of future strategies to promote SVZ progenitor cell mobilization toward brain lesions.  相似文献   

6.
The amyloid precursor protein (APP) is a type I transmembrane protein of unknown physiological function. Its soluble secreted form (sAPP) shows similarities with growth factors and increases the in vitro proliferation of embryonic neural stem cells. As neurogenesis is an ongoing process in the adult mammalian brain, we have investigated a role for sAPP in adult neurogenesis. We show that the subventricular zone (SVZ) of the lateral ventricle, the largest neurogenic area of the adult brain, is a major sAPP binding site and that binding occurs on progenitor cells expressing the EGF receptor. These EGF-responsive cells can be cultured as neurospheres (NS). In vitro, EGF provokes soluble APP (sAPP) secretion by NS and anti-APP antibodies antagonize the EGF-induced NS proliferation. In vivo, sAPP infusions increase the number of EGF-responsive progenitors through their increased proliferation. Conversely, blocking sAPP secretion or downregulating APP synthesis decreases the proliferation of EGF-responsive cells, which leads to a reduction of the pool of progenitors. These results reveal a new function for sAPP as a regulator of SVZ progenitor proliferation in the adult central nervous system.  相似文献   

7.
We evaluated the possible functional expression of metabotropic glutamate receptors (mGluRs) by neural progenitors from embryonic mouse neocortex. Constitutive expression was seen with group I, II, and III mGluRs in undifferentiated cells and neurospheres formed by clustered cells during culture with epidermal growth factor. The group III mGluR agonist, l -2-amino-4-phosphonobutyrate, drastically reduced proliferation activity at 1–100 μM without inducing cell death, with group I and group II mGluR agonists being ineffective, in these neurospheres. Both forskolin and a group III mGluR antagonist significantly increased the proliferation alone, but significantly prevented the suppression by l -2-amino-4-phosphonobutyrate. Activation of group III mGluR significantly decreased mRNA expression of the cell cycle regulator cyclinD1, in addition to inhibiting the transactivation mediated by cAMP of cyclinD1 gene in the pluripotent P19 progenitor cells. Prior activation of group III mGluR led to a significant decrease in the number of cells immunoreactive for a neuronal marker, with an increase in that for an astroglial marker irrespective of differentiation inducers. These results suggest that group III mGluR may be functionally expressed to suppress self-renewal capacity through a mechanism related to cAMP formation with promotion of subsequent differentiation into astroglial lineage in neural progenitors.  相似文献   

8.
9.
10.
Bone marrow stromal cells (MSCs) can be expanded rapidly in vitro and have the potential to be differentiated into neuronal, glial and endodermal cell types. However, induction for differentiation does not always have stable result. We present a new method for efficient induction and acquisition of neural progenitors, neuronal- and glial-like cells from MSCs. We demonstrate that rat MSCs can be induced to neurospheres and most cells are positive for nestin, which is an early marker of neuronal progenitors. In addition, we had success in proliferation of these neurospheres with undifferentiated characteristics and finally we could obtain large numbers of neuronal and glial phenotypes. Many of the cells expressed beta-tubulin III when they were cultivated with our method. MSCs can become a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system.  相似文献   

11.
We have shown marked promotion of both proliferation and neuronal differentiation in pluripotent P19 cells exposed to the green tea amino acid theanine, which is a good substrate for SLC38A1 responsible for glutamine transport. In this study, we evaluated the activity of the mammalian target of rapamycin (mTOR) kinase pathway, which participates in protein translation, cell growth and autophagy in a manner relevant to intracellular glutamine levels, in murine neural progenitor cells exposed to theanine. Exposure to theanine promoted the phosphorylation of mTOR and downstream proteins in neurospheres from embryonic mouse neocortex. Although stable overexpression of SLC38A1 similarly facilitated phosphorylation of mTOR-relevant proteins in undifferentiated P19 cells, theanine failed to additionally accelerate the increased phosphorylation in these stable transfectants. Theanine accelerated the formation of neurospheres from murine embryonic neocortex and adult hippocampus, along with facilitation of both 5-bromo-2’-deoxyuridine incorporation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction in embryonic neurospheres. In embryonic neurospheres previously exposed to theanine, a significant increase was seen in the number of cells immunoreactive for a neuronal marker protein after spontaneous differentiation. These results suggest that theanine activates the mTOR signaling pathway for proliferation together with accelerated neurogenesis in murine undifferentiated neural progenitor cells.  相似文献   

12.
Identification of neural progenitors in the adult mammalian eye   总被引:27,自引:0,他引:27  
We have shown that the embryonic mammalian retina contains neural progenitors which display stem cell properties in vitro. Here we report the characterization of neural progenitors isolated from the adult mammalian eye. These quiescent cells, located in the pigmented ciliary bodies, proliferate in the presence of FGF2 and express the neuroectodermal marker nestin. The proliferating cells give rise to neural spheres and are multipotential; they express cell type-specific markers corresponding to neurons and glia. In addition, neural progenitors can generate secondary neural spheres, thus displaying potential to self-renew. The ciliary body-derived neural progenitors display retina-specific properties; the undifferentiated cells express Chx10, a retinal progenitor marker, and upon differentiation express markers corresponding to specific retinal cell types. Therefore, the pigmented ciliary body in the adult mammalian eye harbors neural progenitors that display stem cell properties and have the capacity to give rise to retinal neurons in vitro.  相似文献   

13.
Neural progenitor cells (NPCs) are considered to be a promising source for stem cell-based regenerative therapy for central nervous disorders. However, the widespread clinical application of NPCs requires another technology that permits the efficient production of pure NPCs in large quantities. In this study, culture substrates were designed by immobilizing epidermal growth factor (EGF) onto the substrate and evaluated for their feasibility of expanding NPCs obtained through the neurosphere culture of induced pluripotent stem (iPS) cells. After three passages we obtained neurospheres that contained cells abundantly expressing an EGF receptor. The neurospheres were dissociated into single cells and seeded onto the EGF-immobilized substrates. It was observed that neurosphere-forming cells seeded and cultured on the EGF-immobilized surface formed a two-dimensional cellular network characteristic of NPCs. These cells were found to be capable of being subcultured, while remaining their proliferation potential. Furthermore, a majority of cells (~99% of total cells) on the substrate was shown to express an NPC marker, nestin, whereas a limited number of cells (~1% of total cells) expressed neuronal marker, β-tubulin III. These results as a whole demonstrate that the EGF-immobilized substrate allows for iPS cell-derived NPCs to efficiently proliferate while maintaining the undifferentiated state.  相似文献   

14.
Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation.  相似文献   

15.
Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.  相似文献   

16.
Permanent functional deficit in patients with spinal cord injury (SCI) is in part due to severe neural cell death. Therefore, cell replacement using stem cells and neural progenitors that give rise to neurons and glia is thought to be a potent strategy to promote tissue repair after SCI. Many studies have shown that stem cells and neural progenitors can be isolated from embryonic, postnatal and adult spinal cords. Recently, we isolated neural progenitors from newborn rat spinal cords. In general, the neural progenitors grew as spheres in culture, and showed immunoreactivity to a neural progenitor cellular marker, nestin. They were found to proliferate and differentiate into glial fibrillary acidic protein-positive astroglia and multiple neuronal populations, including GABAergic and cholinergic neurons. Neurotrophin 3 and neurotrophin 4 enhanced the differentiation of neural progenitors into neurons. Furthermore, the neural progenitors that were transplanted into contusive spinal cords were found to survive and have migrated in the spinal cord rostrally and caudally over 8 mm to the lesion center 7 days after injury. Thus, the neural progenitors isolated from newborn rat spinal cords in combination with neurotrophic factors may provide a tool for cell therapy in SCI patients.  相似文献   

17.
Sharma P  Cline HT 《Neuron》2010,68(3):442-455
Regulation of progenitor cell fate determines the numbers of neurons in the developing brain. While proliferation of neural progenitors predominates during early central nervous system (CNS) development, progenitor cell fate shifts toward differentiation as CNS circuits develop, suggesting that signals from developing circuits may regulate proliferation and differentiation. We tested whether activity regulates neurogenesis in?vivo in the developing visual system of Xenopus tadpoles. Both cell proliferation and the number of musashi1-immunoreactive progenitors in the optic tectum decrease as visual system connections become stronger. Visual deprivation for 2?days increased proliferation of musashi1-immunoreactive radial glial progenitors, while visual experience increased neuronal differentiation. Morpholino-mediated knockdown and overexpression of musashi1 indicate that musashi1 is necessary and sufficient for neural progenitor proliferation in the CNS. These data demonstrate a mechanism by which increased brain activity in developing circuits decreases cell proliferation and increases neuronal differentiation through the downregulation of musashi1 in response to circuit activity.  相似文献   

18.
To understand how the differentiation of stem cells to oligodendroglial progenitors is regulated, we established cultures of neural stem cells from neonatal rat striatum in the presence of epidermal growth factor (EGF) as free-floating neurospheres that were then exposed to an increasing amount of B104 cell-conditioned medium (B104CM). The resultant cells proliferated in response to B104CM but no longer to EGF. In vitro analysis and transplantation studies indicated that these cells were committed to the oligodendroglial lineage, and they were thus referred to as oligospheres. Further characterization of their expression of early markers, cell cycle, migration, and self-renewal suggests that they were pre-O2A progenitors. RT-PCR analysis indicated that the oligosphere cells expressed mRNAs of platelet-derived growth factor α receptor in addition to fibroblast growth factor receptor but not EGF receptor; the latter two receptor mRNAs were expressed by neurosphere cells. Thus, the progression of stem cells to oligodendroglial progenitors is likely induced by factors in B104CM.  相似文献   

19.
Epidermal growth factor (EGF)-treated neurospheres from fetal forebrain contain multipotential cells capable of neuronal, astrocytic, and oligodendroglial differentiation. These neural precursor cells express the TrkB as well as the neurotrophin receptor p75 (p75NTR), suggesting that they are BDNF responsive. In this study, we test whether the p75NTR plays a role in the differentiation of these neural precursor cells in vitro. Activation of the TrkB and the p75NTR by the addition of BDNF facilitates neuronal commitment and marked neurite genesis. However, no promotion of neuronal commitment by BDNF was observed in the neural precursor cells from mice carrying a mutation in the p75NTR gene. In addition, we observed a significant increase in the number of nestin-positive cells and the proliferation of the cells lacking functional p75NTR. These findings suggest that the p75NTR is required for proper neuronal fate decision as well as the differentiation of the neural precursor cells.  相似文献   

20.
Neural stem and progenitor cells serve as a reservoir for new neurons in the adult brain throughout lifetime. One of the critical steps determining the net production of new neurons is neural progenitor proliferation, which needs to be tightly controlled. Since inflammation has detrimental effects on neurogenesis and the 5-lipoxygenase/leukotriene pathway is involved in inflammatory processes, we investigated the effects of leukotrienes and montelukast, a small molecule inhibitor of the leukotriene receptors CysLT(1)R and GPR17, on neural stem and progenitor cell proliferation. We demonstrate expression of the leukotriene receptor GPR17 by neural progenitors and by neural stem cells. Stimulation with excess amounts of leukotrienes did not affect progenitor proliferation, whereas blockade of GPR17 with montelukast strongly elevated neural stem and progenitor proliferation, while maintaining their differentiation fate and potential. This effect was associated with increased ERK1/2 phosphorylation suggesting an involvement of the EGF signaling cascade. Based on our results, montelukast and the inhibition of the 5-LOX pathway might be potent candidates for future therapies employing neurogenesis to promote structural and functional improvement in neurodegeneration, neuropsychiatric disease and ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号