首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chicken embryos have been proven to be an attractive vertebrate model for biomedical research. They have helped in making significant contributions for advancements in various fields like developmental biology, cancer research and cardiovascular studies. However, a non‐invasive, label‐free method of imaging live chicken embryo at high resolution still needs to be developed and optimized. In this work, we have shown the potential of photoacoustic tomography (PAT) for imaging live chicken embryos cultured in bioengineered eggshells. Laser pulses at wavelengths of 532 and 740 nm were used for attaining cross‐sectional images of chicken embryos at different developmental stages. Cross‐sections along different depths were imaged to gain knowledge of the relative depth of different vessels and organs. Due to high optical absorption of vasculature and embryonic eye, images with good optical contrast could be acquired using this method. We have thus reported a label‐free method of performing cross‐sectional imaging of chicken embryos at high resolution demonstrating the capacity of PAT as a promising tool for avian embryo imaging.  相似文献   

3.
Oxygen consumption, heat production (HP) and core temperature (T(af)) were measured over 3 h in 20-34-day-old Muscovy duck and 12-21-day-old chicken embryos at ambient temperature (T(a)) of 37.5 degrees C and thereafter for 3 h at T(a) of 39.0 degrees C. At 37.5 degrees C T(a), HP increased with age in avian embryos of both species, following an exponential function. In muscovy duck embryos, a plateau phase occurred between D29 and D32; in chicken embryos, a similar plateau occurred between D19 and D21. T(af) rose in accordance with HP, and the relationships between T(af) and HP could be described by significant linear regressions in both species. Mostly, HP increased in embryos of both species during heat load, but by less than calculated by the van't Hoff rule; however, there was often also a decrease in HP under these conditions. Obviously, in avian embryos high T(a) causes a down-regulation of HP mediated by active thermoregulatory mechanisms. This is in agreement with data describing the influence of hyperthermia on HP in the postnatal period of birds and mammals. Because of this, the term 'second chemical thermoregulation' defined by Gelineo [C. R. Soc. Biol. (1936) 122 337] for birds and mammals should also be used for avian embryos.  相似文献   

4.
Magnetic resonance microscopy of chick embryos in ovo   总被引:1,自引:0,他引:1  
Magnetic resonance imaging (MRI) of the live 11-day chick embryo with special radiofrequency coils and 3-D imaging methods has produced contiguous 1.25-mm-thick slices with 200-microns pixel resolution, permitting definition of cardiac chambers, cerebral ventricles, spinal cord, liver, and lungs. It was the objective of this study to image younger chick embryos in ovo with higher spatial resolution through the application of implanted radiofrequency coils. Fertilized Arbor Acre eggs were windowed at 9, 6, and 4 days. Circular coils 18 mm in diameter tuned to 85.5 MHz were suspended around the developing embryo. The eggs were sealed with tape and maintained at 37 degrees C during the imaging procedure. MRI was performed in a 2.0-Tesla GE system utilizing a 3-D Fourier transform acquisition in sagittal and axial planes with a partial saturation sequence (TR = 400 ms, TE = 27 ms). Approximately 1 hour of imaging time was required to obtain 16 contiguous 600-microns-thick slices with 50-microns pixel resolution. Embryos remained viable through the imaging procedure. Embryos were photographed, fixed, and cleared for correlative anatomical study. Vitelline vessels, dorsal aorta, aortic arches, cardinal veins, and cardiac chambers were identified as areas of decreased signal intensity. Cerebral ventricles and the vitreous portion of the eye have signal intensities that are less than adjacent neural, scleral, and lens tissue. Further refinements in MR instrumentation and imaging sequences promise improvements in resolution and offer the potential for sequential observations of the intact embryo.  相似文献   

5.
The development of automated microscopy platforms has enabled large-scale observation of biological processes, thereby complementing genome scale biochemical techniques. However, commercially available systems are restricted either by fixed-field-of-views, leading to potential omission of features of interest, or by low-resolution data of whole objects lacking cellular detail. This limits the efficiency of high-content screening assays, especially when large complex objects are used as in whole-organism screening. Here we demonstrate a toolset for automated intelligent high-content screening of whole zebrafish embryos at cellular resolution on a standard wide-field screening microscope. Using custom-developed algorithms, predefined regions of interest-such as the brain-are automatically detected. The regions of interest are subsequently imaged automatically at high magnification, enabling rapid capture of cellular resolution data. We utilize this approach for acquiring 3-D datasets of embryonic brains of transgenic zebrafish. Moreover, we report the development of a mold design for accurate orientation of zebrafish embryos for dorsal imaging, thereby facilitating standardized imaging of internal organs and cellular structures. The toolset is flexible and can be readily applied for the imaging of different specimens in various applications.  相似文献   

6.
The field of biological imaging is progressing at an amazing rate. Advances in both laser-scanning microscopy and green fluorescent protein (GFP) technology are combining to make possible imaging-based approaches for studying developmental mechanisms that were previously impossible. Modern confocal and multi-photon microscopes are pushing the envelope of speed, sensitivity, spectral resolution, and depth resolution to allow in vivo imaging of whole, live embryos at cellular resolution over extended periods of time. In toto imaging, in which nearly every cell in an embryo or tissue can be tracked through space and time during development, may become a standard technique for small transparent embryos such as zebrafish and early stage chick and mouse embryos. GFP and its spectral variants can be used to mark a wide range of in vivo biological information for in toto imaging including gene expression patterns, mutant phenotypes, and protein subcellular localization patterns. Combining in toto imaging and GFP transgenic approaches on a large scale may usher in an explosion of in vivo, developmental data as has happened in the past several years with genomic data. There are significant challenges that must be met to reach these goals. This paper will discuss the current state-of-the-art, the challenges, and the prospects of in toto imaging in the areas of imaging, image analysis, and informatics.  相似文献   

7.
In mammals, preimplantation development primarily occurs in the oviduct (or fallopian tube) where fertilized oocytes migrate through, develop and divide as they prepare for implantation in the uterus. Studies of preimplantation development currently rely on ex vivo experiments with the embryos cultured outside of the oviduct, neglecting the native environment for embryonic growth. This prevents the understanding of the natural process of preimplantation development and the roles of the oviduct in early embryonic health. Here, we report an in vivo optical imaging approach enabling high‐resolution visualizations of developing embryos in the mouse oviduct. By combining optical coherence microscopy (OCM) and a dorsal imaging window, the subcellular structures and morphologies of unfertilized oocytes, zygotes and preimplantation embryos can be well resolved in vivo, allowing for the staging of development. We present the results together with bright‐field microscopy images to show the comparable imaging quality. As the mouse is a well‐established model with a variety of genetic engineering strategies available, the in vivo imaging approach opens great opportunities to investigate how the oviduct and early embryos interact to prepare for successful implantation. This knowledge could have beneficial impact on understanding infertility and improving in vitro fertilization. OCM through a dorsal imaging window enables high‐resolution imaging and staging of mouse preimplantation embryos in vivo in the oviduct.   相似文献   

8.
The chicken embryo represents a suitable model for studying vertebrate sex determination and gonadal sex differentiation. While the basic mechanism of sex determination in birds is still unknown, gonadal morphogenesis is very similar to that in mammals, and most of the genes implicated in mammalian sex determination have avian homologues. However, in the chicken embryo, these genes show some interesting differences in structure or expression patterns to their mammalian counterparts, broadening our understanding of their functions. The novel candidate testis-determining gene in mammals, DMRT1, is also present in the chicken, and is expressed specifically in the embryonic gonads. In chicken embryos, DMRT1 is more highly expressed in the gonads and Müllerian ducts of male embryos than in those of females. Meanwhile, expression of the orphan nuclear receptor, Steroidogenic Factor 1 (SF1) is up-regulated during ovarian differentiation in the chicken embryo. This contrasts with the expression pattern of SF1 in mouse embryos, in which expression is down-regulated during female differentiation. Another orphan receptor initially implicated in mammalian sex determination, DAX1, is poorly conserved in the chicken. A chicken DAX1 homologue isolated from a urogenital ridge library lacked the unusual DNA-binding motif seen in mammals. Chicken DAX1 is autosomal, and is expressed in the embryonic gonads, showing somewhat higher expression in female compared to male gonads, as in mammals. However, expression is not down-regulated at the onset of testicular differentiation in chicken embryos, as occurs in mice. These comparative data shed light on vertebrate sex determination in general.  相似文献   

9.
In the avian embryo at term we measured the ventilatory response to hyperoxia, which lowers the chemoreceptor activity, to test the hypothesis that the peripheral chemoreceptors are tonically functional. Measurements of pulmonary ventilation (VE) were conducted in chicken embryos during the external pipping phase, at 38 degrees C, during air and hyperoxia, and during hypercapnia in air or in hyperoxia. Hyperoxia (95% O2) maintained for 30 min lowered VE by 15-20%, largely because of a reduction in breathing frequency (f). The oxygen consumption and carbon dioxide production of the embryo were not altered. The hyperoxic drop of VE was more marked in those embryos, which had higher values of normoxic VE. Hypercapnia, whether 2 or 5% CO2, increased VE, almost exclusively because of the increase in tidal volume (VT). The increase in VT was less pronounced when hypercapnia was associated with hyperoxia, and f slightly decreased. Hence, in hyperoxia, the VE response to CO2 was less than in air. The results are in support of the hypothesis that in the avian embryo, after the onset of breathing, the peripheral chemoreceptors exert a tonic facilitatory input on . This differs from neonatal mammals, where the chemoreceptors have minimal or no activity at birth, presumably because the increased arterial oxygenation with the onset of air breathing is a much more sudden phenomenon in mammals than it is in birds.  相似文献   

10.
Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen's node).  相似文献   

11.
The differentiation of embryonic chick gonads lacking germ cells was compared to that of normal chick gonads to determine whether the somatic elements of sterile avian gonads will undergo normal sexual differentiation. Primordial germ cells were removed by surgical excision of anterior germinal crescent from early embryos, Hamburger and Hamilton stages 6–11. Surgically treated and control embryos were sacrificed at 6, 15, and 20 days of incubation, and their gonads were studied histologically. Analysis of differentiation was based on morphological criteria at the cellular, tissue, and organ levels. In both male and female embryos, the somatic elements of the gonads differentiated normally in the absence of germ cells. The significance of these results for understanding the controls of differentiation of both the somatic gonad and the germ cells in birds is discussed and correlated with similar results in mammals.  相似文献   

12.
Functional genomics in avian models has lagged behind that of mammals, and the production of transgenic birds has proven to be challenging and time-consuming. All current methods rely upon breeding chimeric birds through at least one generation. Here, we report a rapid method for the ubiquitous expression of GFP in chicken embryos in a single generation (G-0), using the avian retroviral vector, Replication-Competent Avian sarcoma-leukosis virus, with a Splice acceptor, Bryan RSV Pol (RCASBP). High-titre RCASBP retrovirus carrying eGFP was injected into unincubated (stage X) blastoderms in ovo. This resulted in stable and widespread expression of eGFP throughout development in a very high proportion of embryos. Transgenic tissues were identified by fluorescence and immunohistochemistry. These results indicate that chicken blastodermal cells are permissive for infection by the RCASBP virus. This system represents a rapid and efficient method of producing global gene expression in the chicken embryo. The method can be used to generate avian cells with a stable genetic marker, or to induce global expression of a gene of choice. Interestingly, in day 8.5 embryos, somatic cells the embryonic gonads were predominantly GFP positive but primordial germ cells were GFP negative, indicating viral silencing in the embryonic germline. This dichotomy in the gonads allows the isolation or enrichment of the germ cells through negative selection during embryonic stages. This transgenic chicken model is of value in developmental studies, and for the isolation and study of avian primordial germ cells.  相似文献   

13.
Ross PJ  Perez GI  Ko T  Yoo MS  Cibelli JB 《BioTechniques》2006,41(6):741-750
Fluorescent live imaging of cells and embryos at subcellular resolution poses significant challenges for biologists due to morbidity and mortality ensuing from phototoxicity. Here we report the use of a spinning-disk confocal microscope to image mouse and bovine preimplantation embryos without impairing their developmental potential. We also present data indicating that this imaging technique does not affect the functionality of subcellular components as assessed by reactive oxygen species (ROS) production, caspase activity, and DNA integrity. Spinning-disk confocal microscopy was also useful in determining cell number and allocation in transgenic bovine blastocysts. We conclude that this imaging method is suitable for monitoring preimplantation embryos.  相似文献   

14.
Like mammals, bird embryos are capable of chemosensory learning, but the ontogeny of their feeding preferences has not been examined. We tested if the timing of stimulation in chicken embryos modulates the impact of in ovo olfactory stimulation on later food preferences. We exposed chicken embryos to an olfactory stimulus for a 4-day period in the middle or toward the end of the incubation period. The chicks were tested for their preference between foods with and without the olfactory stimulus in 3-min choice tests and on a 24-h time scale. Regardless of the type of food (familiar or novel) or the duration of the test, the control chicks not exposed to the olfactory stimulus consistently showed significant preferences for non-odorized foods. Chicks that were exposed in ovo to the olfactory stimulus did not show a preference for odorized or non-odorized foods. Only those chicks that were exposed to the olfactory stimulus toward the end of the incubation period differed from the controls and incorporated a higher proportion of odorized food into their diets on a 24-h time scale. This result indicates that olfactory stimulation at the end of embryonic development has a stronger impact on later feeding preferences. Our findings contribute to the growing pool of recent data appreciating the impact of olfactory signals on behavior regulation in avian species.  相似文献   

15.
The endothermic state of mammals and birds requires high heart rates to accommodate the high rates of oxygen consumption. These high heart rates are driven by very similar conduction systems consisting of an atrioventricular node that slows the electrical impulse and a His-Purkinje system that efficiently activates the ventricular chambers. While ectothermic vertebrates have similar contraction patterns, they do not possess anatomical evidence for a conduction system. This lack amongst extant ectotherms is surprising because mammals and birds evolved independently from reptile-like ancestors. Using conserved genetic markers, we found that the conduction system design of lizard (Anolis carolinensis and A. sagrei), frog (Xenopus laevis) and zebrafish (Danio rerio) adults is strikingly similar to that of embryos of mammals (mouse Mus musculus, and man) and chicken (Gallus gallus). Thus, in ectothermic adults, the slow conducting atrioventricular canal muscle is present, no fibrous insulating plane is formed, and the spongy ventricle serves the dual purpose of conduction and contraction. Optical mapping showed base-to-apex activation of the ventricles of the ectothermic animals, similar to the activation pattern of mammalian and avian embryonic ventricles and to the His-Purkinje systems of the formed hearts. Mammalian and avian ventricles uniquely develop thick compact walls and septum and, hence, form a discrete ventricular conduction system from the embryonic spongy ventricle. Our study uncovers the evolutionary building plan of heart and indicates that the building blocks of the conduction system of adult ectothermic vertebrates and embryos of endotherms are similar.  相似文献   

16.
Noninvasive visualization of embryos at different development stages is crucial for the understanding of the basic developmental biology. It is therefore desirable to have an imaging tool capable of rapidly evaluating the effects of gene manipulation or genome editing in developing embryos for the studies of gene functions and genetic engineering. Here, we propose and demonstrate a novel use of optical coherence tomography (OCT) to noninvasively exam the embryonic development of the migratory locusts in real time with 3‐dimensional (3D) view capability. In particular, we obtain the sufficiently high spatial resolution tomographic 2D and 3D images of live locust embryos throughout their development processes. We show that not only we are able to noninvasively observe all previously known forms of blastokinesis as an embryo develops, such as anatrepsis, katatrepsis, revolution, rotation and diapauses, and determine their precise occurring time or duration, but also discover an unreported rotation form we named “twist.” In addition, with the OCT images we determined the exact occurring time of diapauses of the locusts from Tibetan plateau for the first time. Finally, we demonstrate that OCT systems can be used to rapidly capture the development defects of genetically modified embryos in which certain genes essential for embryonic development were suppressed by RNA interference. Our work shows that OCT is an enabling imaging tool with sufficient spatial resolution for the rapid evaluation of embryonic variations of small animals.  相似文献   

17.
We review digestion and osmoregulation in the avian gut, with an emphasis on the ways these different functions might interact to support or constrain each other and the ways they support the functioning of the whole animal in its natural environment. Differences between birds and other vertebrates are highlighted because these differences may make birds excellent models for study and may suggest interesting directions for future research. At a given body size birds, compared with mammals, tend to eat more food but have less small intestine and retain food in their gastrointestinal tract (GIT) for shorter periods of time, despite generally higher mass‐specific energy demands. On most foods, however, they are not less efficient at digestion, which begs the question how they compensate. Intestinal tissue‐specific rates of enzymatic breakdown of substrates and rates of active transport do not appear higher in birds than in mammals, nor is there a demonstrated difference in the extent to which those rates can be modulated during acclimation to different feeding regimes (e.g. diet, relative intake level). One compensation appears to be more extensive reliance on passive nutrient absorption by the paracellular pathway, because the avian species studied so far exceed the mammalian species by a factor of at least two‐ to threefold in this regard. Undigested residues reach the hindgut, but there is little evidence that most wild birds recover microbial metabolites of nutritional significance (essential amino acids and vitamins) by re‐ingestion of faeces, in contrast to many hindgut fermenting mammals and possibly poultry. In birds, there is some evidence for hindgut capacity to breakdown either microbial protein or protein that escapes the small intestine intact, freeing up essential amino acids, and there is considerable evidence for an amino acid absorptive capacity in the hindgut of both avian and mammalian hindgut fermenters. Birds, unlike mammals, do not excrete hyperosmotic urine (i.e. more than five times plasma osmotic concentration). Urine is mixed with digesta rather than directly eliminated, and so the avian gut plays a relatively more important role in water and salt regulation than in mammals. Responses to dehydration and high‐ and low‐salt loads are reviewed. Intestinal absorption of ingested water is modulated to help achieve water balance in one species studied (a nectar‐feeding sunbird), the first demonstration of this in any terrestrial vertebrate. In many wild avian species the size and digestive capacity of the GIT is increased or decreased by as much as 50% in response to nutritional challenges such as hyperphagia, food restriction or fasting. The coincident impacts of these changes on osmoregulatory or immune function of the gut are poorly understood.  相似文献   

18.
Very little is known about the genes involved in the regulation of avian skin and feather pigmentation. In mammals, two gene families have been identified as being important for the regulation of melanin biosynthesis. To isolate the avian equivalents of these families, we have generated an embryonic chick melanocyte cDNA library. Neural crest cells from 500 black chick embryos were cultured under conditions supportive of melanocyte differentiation and proliferation. A cDNA library was constructed and screened with a mouse tyrosinase cDNA probe. Nineteen clones were obtained, seven of which cross-hybridized to a mouse tyrosinase cDNA on Southern blots. The longest of these clones, B8.3 (1.9 kb), was sequenced and found to share 99.7% nucleotide and 99.8% amino acid sequence homology to a reported chick tyrosinase cDNA. Both Northern blot analysis andin situhybridization demonstrated that clone B8.3 was expressed in the retinal pigment epithelium of chick embryos. Our results suggest therefore that the cDNA library described here may allow the cloning of novel melanogenic genes.  相似文献   

19.
To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo‐wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink‐infused embryos were further subjected to histological sections, and double stained with antibodies including QH‐1 (quail), α smooth muscle actin (αSMA), and PECAM‐1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter‐labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)‐lectin and Rhodamine‐dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink‐infused embryos visualized fine vascular structures of both embryo proper and extra‐embryonic plexus in a Z‐stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals.  相似文献   

20.
Fluorescent proteins have emerged as an ideal fluorescent marker for studying cell morphologies in vital systems. These proteins were first applied in whole organisms with established germ-line transformation protocols, but now it is possible to label cells with fluorescent proteins in other organisms. Here we present two ways to introduce GFP expressing plasmids into avian embryos for vital confocal and two-photon imaging. First, electroporation is a powerful approach to introduce GFP into the developing neural tube, offering several advantages over dye labeling. Second, we introduce a new lipid-based transfection system for introducing plasmid DNA directly to a small group of injected cells within live, whole embryos. These complementary approaches make it possible to transfect a wide-range of cell types in the avian embryo and the bright, stable, uniform expression of GFP offers great advantages for vital fluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号