首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometrical configuration of a short-living allene oxide reaction product that arises under the catalysis by flaxseed allene oxide synthase (CYP74A) was studied by NMR spectroscopy. The structure of (9Z,11E)-12,13-epoxyoctadeca-9,11-dienoic acid was established for it from the results of the nuclear Overhauser effect. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.  相似文献   

2.
Treatment of methyl 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate with vanadium oxyacetylacetonate led to the formation of two diastereometric α,β-epoxy alcohols, i.e. methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate and methyl 11(S), 12(S)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate. The epoxy alcohols underwent spontaneous hydrolysis into isomeric trihydroxyesters. The first mentioned epoxy alcohol afforded methyl 9(R), 12(S), 13(S)- and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoates as major hydrolysis products whereas the latter epoxy alcohol afforded methyl 9(R), 12(R), 13(S)- and methyl 9(S), 12(R)-13(S)-trihydroxy-10(E)-octadecenoates as major compounds. Smaller amounts of diastereomeric methyl 11,12,13-trihydroxy-9-octadecenoates were also formed from both epoxy alcohols. The vanadium-catalyzed conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13(S)HPOD) (methyl ester) into α,β-epoxy alcohols and their further conversion into trihydroxy derivatives offers a model system for similar transformations of certain poly-unsaturated fatty acids recently described in the fungus, Saprolegnia parasitica.  相似文献   

3.
In the presence of oxygen, UV-irradiation of a solution of methyl 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate (13-HPOD) in cyclohexane leads to a broad pattern of reaction products of which a trihydroxyene, seven epoxyhydroxides, four hydroxydienes, four epoxyhydroperoxides, six oxodienes and an epoxycyclohexylene were identified as the main components. Two oxodienes having a (Z)-double bond adjacent to the carbonyl group and the epoxycyclohexylene are reported for the first time. In contrast to results published recently for the UV-degradation of the 13-HPOD in methanol, the decomposition of the 13-HPOD in cyclohexane results in the formation of the 9-HPOD by a rearrangement of the hydroperoxy group. Consequently the reaction products are formed as mixtures of positional isomers. The reaction pathways leading to the identified compounds are discussed.  相似文献   

4.
Previously, we reported that 2(E)-nonenal, having a low flavor threshold (0.1 ppb) and known as the major contributor to a cardboard flavor (stale flavor) in stored beer, is produced by lipoxygenase-1 and a newly found factor named 9-fatty acid hydroperoxide lyase-like (9-HPL-like) activity in malt. To assess the involvement of 9-HPL-like activity in beer staling, we compared the values of the wort nonenal potential, an index for predicting the staleness of beer, with the lipoxygenase and 9-HPL-like activity of 20 commercial malts. There was a significant correlation between the malt 9-HPL-like activity and the values of wort nonenal potential (r=0.53, P<0.05), while the correlation between malt lipoxygenase activity and the wort nonenal potential was statistically insignificant. Analysis of the partially purified 9-HPL-like activity from embryos of germinating barley seeds indicated that 9-HPL-like activity consisted of fatty acid hydroperoxide lyase and 3Z:2E isomerase.  相似文献   

5.
The reaction of (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (1a), one of the major peroxidation products of linoleic acid and an important physiological mediator, with the Fenton reagent (Fe(2+)/EDTA/H(2)O(2)) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with >80% substrate consumption after 4h to give a defined pattern of products, the major of which were isolated as methyl esters and were subjected to complete spectral characterization. The less polar product was identified as (9Z,11E)-13-oxo-9,11-octadecadienoate (2) methyl ester (40% yield). Based on 2D NMR analysis the other two major products were formulated as (11E)-9,10-epoxy-13-hydroxy-11-octadecenoate (3) methyl ester (15% yield) and (10E)-9-hydroxy-13-oxo-10-octadecenoate (4) methyl ester (10% yield). Mechanistic experiments, including deuterium labeling, were consistent with a free radical oxidation pathway involving as the primary event H-atom abstraction at C-13, as inferred from loss of the original S configuration in the reaction products. Overall, these results provide the first insight into the products formed by oxidation of 1a with the Fenton reagent, and hint at novel formation pathways of the hydroxyepoxide 3 and hydroxyketone 4 of potential (patho)physiological relevance in settings of oxidative stress.  相似文献   

6.
Transformation of 12,13-epoxy-11-hydroxy-9-octadecenoic acid and 4,5-epoxy-N-acetylsphingosine by addition of porcine liver homogenate and human liver microsomes, respectively was investigated. Both epoxides were converted to corresponding dioles by porcine liver homogenate, but not by human liver microsomes, suggesting location of the hydrolyzing enzymes not in the microsomes, but within the cell wall.  相似文献   

7.
In the presence of oxygen, UV-irradiation of a solution of methyl 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate (13-HPOD) in methanol yields stereoisomers of methyl 9,13-dihydroxy-10-methoxy-11-(E)-octadecenoate and methyl 9,13-dihydroxy-12-methoxy-10(E)-octadecenoate as major products. The reaction pathway to the products was established by photolysis experiments with labeled 13-HPOD and with intermediates of the reaction route. When methanol was substituted by water in the reaction system, the corresponding trihydroxyoctadecenoic acids were formed. This was confirmed by aerobic photolysis of 13-HPOD (free acid) dissolved in water. Threo and erythro methyl 12, 13-epoxy-11-hydroxy-9(Z)-octadecenoates belong to the minor compounds formed during aerobic photolysis of the 13-HPOD in methanol. Labeling experiments indicated that the threo compound resulted mainly from a rearrangement of the 13-HPOD while the erythro compound is mainly formed via secondary hydroperoxidation.  相似文献   

8.
Previous studies indicate that 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA), an endothelium-derived hyperpolarizing factor in the rabbit aorta, mediates a portion of the relaxation response to acetylcholine by sequential metabolism of arachidonic acid by 15-lipoxygenase, hydroperoxide isomerase, and epoxide hydrolase. To determine the stereochemical configuration of the endothelial 11,12,15-THETA, its activity and chromatographic migration were compared with activity and migration of eight chemically synthesized stereoisomers of 11,12,15(S)-THETA. Of the eight isomers, only 11(R),12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid comigrated with the biological 11,12,15-THETA on reverse- and normal-phase HPLC and gas chromatography. The same THETA isomer (10(-7)-10(-4) M) relaxed the rabbit aorta in a concentration-related manner (maximum relaxation = 69 +/- 5%). These relaxations were blocked by apamin (10(-7) M), an inhibitor of small-conductance Ca2+-activated K+ channels. In comparison, 11(S),12(R),15(S),5(Z),8(Z),13(E)-THETA (10(-4) M) relaxed the aorta by 22%. The other six stereoisomers were inactive in this assay. With use of the whole cell patch-clamp technique, it was shown that 10(-4) M 11(R),12(S),15(S),5(Z),8(Z),13(E)-THETA increased outward K+ current in isolated aortic smooth muscle cells by 119 +/- 36% at +60 mV, whereas 10(-4) M 11(R),12(R),15(S),5(Z),8(Z),13(E)-THETA increased outward K+ current by only 20 +/- 2%. The 11(R),12(S),15(S),5(Z),8(Z),13(E)-THETA-stimulated increase in K+ current was blocked by pretreatment with apamin. These studies suggest that 11(R),12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid is the active stereoisomer produced by the rabbit aorta. It relaxes smooth muscle by activating K+ channels. The specific structural and stereochemical requirements for K+ channel activation suggest that a specific binding site or receptor of 11,12,15-THETA is involved in these actions.  相似文献   

9.
Conversions of (Z,E)- and (E,E)-isomers of linoleic acid 13- and 9-hydroperoxides with flax and maize allene oxide synthase were studied. All-(E) but not (Z,E) hydroperoxides readily undergo cyclization via allene oxides into trans-cyclopentenones. These results suggest that double bond geometry dramatically affects the formation of pericyclic pentadienyl cation intermediate and thus the capability of 18:2-allene oxides to undergo electrocyclization into cyclopentenones.  相似文献   

10.
An asymmetric synthesis of 16-HETE, an endogenous inhibitor of neutrophil activity, was achieved in six steps from R-(-)-glycidyl benzyl ether in 28% overall yield.  相似文献   

11.
12.
The first total synthesis for the sponge derived (5Z,9Z)-(+/-)-2-methoxy-5,9-octadecadienoic acid, an analog of taxoleic acid, was accomplished in seven steps and in a 10% overall yield. It was again corroborated that the best strategy to prepare these cis,cis dimethylene interrupted double bonds is the double-alkyne bromide coupling reaction of 1,5-hexadiyne, which provides the advantage of achieving a 100% cis stereochemical purity for both double bonds after hydrogenation under Lindlar conditions. The alpha-methoxy functionality was best prepared via the Mukaiyama reaction of (4Z,8Z)-heptadecadienal with trimethylsilyl cyanide and triethylamine followed by acid hydrolysis. Selective methylation of the hydroxyl group of (5Z,9Z)-(+/-)-2-hydroxy-5,9-octadecadienoic acid was achieved with sodium hydride/methyl iodide when tetrahydrofuran was used as solvent. Complete spectral data is presented, for the first time, for this unusual marine alpha-methoxylated fatty acid.  相似文献   

13.
Diol synthase from Aspergillus nidulans was cloned and expressed in Escherichia coli. Recombinant E. coli cells expressing diol synthase from A. nidulans converted linoleic acid to a product that was identified as 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The recombinant cells and the purified enzyme showed the highest activity for linoleic acid among the fatty acids tested. The optimal reaction conditions for the production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid using whole recombinant E. coli cells expressing diol synthase were pH 7.5, 35°C, 250 rpm, 5 g l?1 linoleic acid, 23 g l?1 cells, and 20% (v/v) dimethyl sulfoxide in a 250-ml baffled flask. Under these optimized conditions, whole recombinant cells expressing diol synthase produced 4.98 g l?1 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid for 150 min without detectable byproducts, with a conversion yield of 99% (w/w) and a productivity of 2.5 g l?1 h?1. This is the first report on the biotechnological production of dihydroxy fatty acid using whole recombinant cells expressing diol synthase.  相似文献   

14.
15.
The four stereoisomers of the endothelial-derived vasorelaxant 11,12,15(S)-trihydroxyeicosatrienoic acid [1, 11,12,15(S)-THETA] were prepared by a triply convergent, asymmetric route that exploited the stereospecific, copper mediated cross-coupling of alpha,beta-dialkoxystannanes with organic electrophiles and the utility of dialkylthionocarbamates as orthogonal alcohol protective groups. Only 11(R),12(S),15(S)-THETA was comparable to natural material by HPLC, GC/MS, and in vitro bioassay.  相似文献   

16.
Crystallization and polymorphic properties of linoleic acid (cis-9, cis-12-Octadecadienoic acid) (LA) and alpha-linolenic acid (cis-9, cis-12, cis-15-Octadecatrienoic acid) (alpha-LNA) have been studied by optical microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The DSC analyses presented three polymorphs in LA, and two polymorphs in alpha-LNA. The XRD patterns of the higher- and lower-temperature forms in LA and alpha-LNA showed orthorhombic O'(//)+O-like and O'(//) subcell, which were similar to those of alpha- and gamma-forms of mono-unsaturated fatty acids, respectively. From the solvent crystallization of LA and alpha-LNA in acetonitrile, single crystals of the higher temperature polymorphs have been obtained. The crystal habits of truncated rhombic shape were also similar to those of alpha-forms of the mono-unsaturated fatty acids. The enthalpy and entropy values of fusion and dissolution of the alpha-forms of LA, alpha-LNA and oleic acid showed that the two values decreased with increasing number of the cis-double bond.  相似文献   

17.
Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase.  相似文献   

18.
Complexes of formula M(2,5-DHB)24H2O (M = Mn, Co, Ni, Zn, Cu and Cd; 2,5-DHB = 2,5-dihydroxybenzoate) were prepared and characterized by means of infrared and electronic spectroscopy, and by electron spin resonance. For the Zn complex the crystal and molecular structure was also determined by single-crystal X-ray diffraction analysis. The crystal is orthorhombic, space group Pbca (No. 61), with a = 18.503(4), b = 13.536(3), c = 6.900(2) Å, and Z = 4. The final refinement used 877 reflections and gave a residual R value of 0.041. The complex has slightly compressed octahedral coordination, with the zinc atom bound to two monodentate carboxylate groups lying in trans positions and four water molecules. X-ray data and infrared spectra show the Mn, Co, Ni, Zn and Cd complexes to be isostructural with the Zn compound. The electronic, infrared and ESR spectra of the copper(II) complex are consistent with a CuO4? based chromophore involving two water molecules and two monodentate carboxylate groups in the metal plane, and long axial contacts.  相似文献   

19.
Incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn (Zea mays L.) hydroperoxide dehydrase led to the formation of an unstable allene oxide derivative, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid. Further conversion of the allene oxide yielded two major products, i.e. alpha-ketol 12-oxo-13-hydroxy-9(Z),15(Z)-octadecadienoic acid, and 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA). 12-Oxo-PDA was formed from allene oxide by two different pathways, i.e. spontaneous chemical cyclization, leading to racemic 12-oxo-PDA, and enzyme-catalyzed cyclization, leading to optically pure 12-oxo-PDA. The allene oxide cyclase, a novel enzyme in the metabolism of oxygenated fatty acids, was partially characterized and found to be a soluble protein with an apparent molecular weight of about 45,000 that specifically catalyzed conversion of allene oxide into 9(S),13(S)-12-oxo-PDA.  相似文献   

20.
Abstract

Complexation of toxic metal ions with maleic acid in (0.0–2.5% w/v) cetyltrimethylammonium bromide (CTAB)–water mixtures has been studied pH-metrically at ambient conditions and an ionic strength of 0.16 mol L-1. The existence of different binary species was established from modelling studies using the computer program MINIQUAD75. The best-fit chemical models were selected based on statistical parameters such as the crystallographic R factor and sum of the squares of residuals in mass-balance equations. The models for binary complex systems contain the chemical species ML2, ML2H and ML3 for Pb(II), Cd(II) and Hg(II) in CTAB–water mixtures. The trend in the variation of stability constants with change in the mole fraction of the medium was explained based on electrostatic and non-electrostatic forces. Distribution of the species with pH at different compositions of CTAB–water mixtures was also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号