首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strains of hemolytic Vibrio cholerae O1 (El Tor vibrio) which are sensitive to Mukerjee's cholera phage group IV were isolated from cholera patients in North-East Thailand in 1986. Plaques of the phage on these hemolytic V. cholerae O1 were usually translucent but almost transparent on some strains, just like the plaques on non-hemolytic V. cholerae O1 (classical vibrio). These hemolytic V. cholerae O1 were lysogenized with the infection of cholera phage IV, and the lysogenized strains produced phage different from cholera phage IV. These hemolytic strains were classified into Cured type in prophage typing of V. cholerae O1, El Tor, because they were also lysogenized with Kappa phage and were hemolytic. When Cured-type V. cholerae O1, El Tor previously isolated in various countries were examined for the sensitivity to cholera phage IV, some of the isolates were sensitive.  相似文献   

2.
Vibrio cholerae species are extracellular, waterborne, gram-negative bacteria that are overwhelmed by predators in aquatic environments. The unencapsulated serogroup V. cholerae O1 and encapsulated V. cholerae O139 cause epidemic and pandemic outbreaks of cholera. It has recently been shown that the aquatic and free-living amoeba Acanthamoeba castellanii is not a predator to V. cholerae O139; rather, V. cholerae O139 has shown an intracellular compatibility with this host. The aim of this study was to examine the ability of V. cholerae O1 classical and El Tor strains to grow and survive in A. castellanii. The interaction between A. castellanii and V. cholerae O1 strains was studied by means of amoeba cell counts and viable counts of the bacteria in the absence or presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Confocal microscopy and electron microscopy were used to determine the intracellular localization of V. cholerae in A. castellanii. The results showed that V. cholerae O1 classical and El Tor strains grew and survived intracellularly in the cytoplasm of trophozoites, and that the bacteria were also found in the cysts of A. castellanii. The interaction showed a facultative intracellular behaviour of V. cholerae O1 classical and El Tor strains and a possible role of A. castellanii as an environmental host of V. cholerae species.  相似文献   

3.
The bacterium Vibrio cholerae, the etiological agent of cholera, is often found attached to plankton, a property that is thought to contribute to its environmental persistence in aquatic habitats. The V. cholerae O1 El Tor biotype and V. cholerae O139 strains produce a surface pilus termed the mannose-sensitive hemagglutinin (MSHA), whereas V. cholerae O1 classical biotype strains do not. Although V. cholerae O1 classical does not elaborate MSHA, the gene is present and expressed at a level comparable to that of the other strains. Since V. cholerae O1 El Tor and V. cholerae O139 have displaced V. cholerae O1 classical as the major epidemic strains over the last fifteen years, we investigated the potential role of MSHA in mediating adherence to plankton. We found that mutation of mshA in V. cholerae O1 El Tor significantly diminished, but did not eliminate, adherence to exoskeletons of the planktonic crustacean Daphnia pulex. The effect of the mutation was more pronounced for V. cholerae O139, essentially eliminating adherence. Adherence of the V. cholerae O1 classical mshA mutant was unaffected. The results suggest that MSHA is a factor contributing to the ability of V. cholerae to adhere to plankton. The results also showed that both biotypes of V. cholerae O1 utilize factors in addition to MSHA for zooplankton adherence. The expression of MSHA and these additional, yet to be defined, adherence factors differ in a serogroup- and biotype-specific manner.  相似文献   

4.
A selected antibody enzyme immunoassay (SAEIA) for the general detection of Vibrio cholerae O1 species has been developed using the immunological reagents of a rabbit antiserum specific for V. cholerae O1 classical Inaba 569B and immobilized cell fragments of V. cholerae O1 El Tor 85P6, and beta-D-galactosidase-labeled goat anti-rabbit immunoglobulin G as tracer. The SAEIA was specific for V. cholerae O1 species and showed low cross-reaction values to other microorganism species tested including Vibrio parahaemolyticus. The detection limit of the SAEIA was 4,500 cells per assay for all the 13 strains of V. cholerae O1 examined. Quantitative comparison on the growth of the El Tor 85P4 in several foods cultured for 24 hr were studied using the SAEIA. Preceding the experiments, little inhibition of every food homogenate for the measurement of the SAEIA was first demonstrated and then the homogenate was directly used for an assay sample. The interaction of the growth of Escherichia coli to that of V. cholerae O1 in a food was also found to be little under the mixed culturing of both bacteria using the SAEIA.  相似文献   

5.
CTXphi is a filamentous, lysogenic bacteriophage whose genome encodes cholera toxin, the primary virulence factor produced by Vibrio cholerae. CTX prophages in O1 El Tor and O139 strains of V. cholerae are found within arrays of genetically related elements integrated at a single locus within the V. cholerae large chromosome. The prophages of O1 El Tor and O139 strains generally yield infectious CTXphi. In contrast, O1 classical strains of V. cholerae do not produce CTXphi, although they produce cholera toxin and they contain CTX prophages integrated at two sites. We have identified the second site of CTX prophage integration in O1 classical strains and characterized the classical prophage arrays genetically and functionally. The genes of classical prophages encode functional forms of all of the proteins needed for production of CTXphi. Classical CTX prophages are present either as solitary prophages or as arrays of two truncated, fused prophages. RS1, a genetic element that is closely related to CTXphi and is often interspersed with CTX prophages in El Tor strains, was not detected in classical V. cholerae. Our model for CTXphi production predicts that the CTX prophage arrangements in classical strains will not yield extrachromosomal CTX DNA and thus will not yield virions, and our experimental results confirm this prediction. Thus, failure of O1 classical strains of V. cholerae to produce CTXphi is due to overall deficiencies in the structures of the arrays of classical prophages, rather than to mutations affecting individual CTX prophage genes.  相似文献   

6.
An aberrant hemolysin of Vibrio cholerae non-O1.   总被引:1,自引:0,他引:1  
An aberrant hemolysin produced by a Vibrio cholerae non-O1 strain N037 (N037-hly) was purified and characterized. N037-Hly was antigenically very similar to El Tor hemolysin but differed in molecular weight (48,000 vs. 60,000), interaction with glucose, and hemolytic activity. Of 100 V. cholerae non-O1 strains other than the N037 strain examined, none produced this aberrant hemolysin. The N-terminal amino acid sequence of N037-hly was highly homologous to that of El Tor hemolysin.  相似文献   

7.
Vibrio cholerae El Tor RV79 is phenotypically nonhemolytic; however, strongly hemolytic convertants are occasionally observed on blood agar plates. We have cloned DNA sequences corresponding to the hemolysin determinant from RV79 (Hly+) in the lambda L47.1 and pBR322 vectors. A 2.3-kilobase fragment of V. cholerae DNA was found to be necessary for hemolytic activity. This cloned DNA sequence was used as a probe in Southern blot hybridization analysis of chromosomal restriction digests of a variety of El Tor and classical biotype V. cholerae strains. In all cases, DNA fragments with the same electrophoretic mobilities hybridized to the Hly probe. The results presented demonstrate that the cloned hemolysin determinant is the hly locus. By using mutator vibriophage VcA-3 insertion to promote high-frequency transfer, the hly locus was mapped between arg and ilv on the V. cholerae RV79 chromosome.  相似文献   

8.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

9.
Variation in epitopes of the B subunit of cholera toxin (CT-B) produced by strains of El Tor and classical biotype Vibrio cholerae O1 was examined using monoclonal antibodies prepared to V. cholerae 569B CT. CT-B epitopes were markedly conserved for V. cholerae classical biotypes. In contrast, epitope variation was observed for El Tor biotypes, which produced both a classical-like CT-B and a unique CT-B lacking at least one epitope common to 569B CT-B. The missing epitope was located outside the GM1 ganglioside-binding site. From results of the study reported here, genetic divergence is exhibited in the El Tor biotype CT-B versus classical CT-B. Furthermore, at least five unique epitopes of V. cholerae 569B CT-B can be defined.  相似文献   

10.
Zymovars analysis also known as multilocus enzyme electrophoresis is applied here to investigate the genetic variation of Vibrio cholerae strains and characterise strains or group of strains of medical and epidemiological interest. Fourteen loci were analyzed in 171 strains of non-O1 non-O139, 32 classical and 61 El Tor from America, Africa, Europe and Asia. The mean genetic diversity was 0.339. It is shown that the same O antigen (both O1 and non-O1) may be present in several genetically diverse (different zymovars) strains. Conversely the same zymovar may contain more than one serogroup. It is confirmed that the South American epidemic strain differs from the 7th pandemic El Tor strain in locus LAP (leucyl leucyl aminopeptidase). Here it is shown that this rare allele is present in 1 V. mimicus and 4 non-O1 V. cholerae. Non toxigenic O1 strains from South India epidemic share zymovar 14A with the epidemic El Tor from the 7th pandemic, while another group have diverse zymovars. The sucrose negative epidemic strains isolated in French Guiana and Brazil have the same zymovar of the current American epidemic V. cholerae.  相似文献   

11.
12.
Pang B  Yan M  Cui Z  Ye X  Diao B  Ren Y  Gao S  Zhang L  Kan B 《Journal of bacteriology》2007,189(13):4837-4849
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.  相似文献   

13.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

14.
A method for studies of an El Tor-associated antigen of Vibrio cholerae O1   总被引:1,自引:0,他引:1  
A method for studying the biotype El Tor associated mannose-sensitive haemagglutinin (MSHA) of V. cholerae O1 has been developed. By using crude MSHA adsorbed to chicken erythrocytes as solid phase antigen in an enzyme-linked immunosorbent assay (ELISA), antisera against V. cholerae of the El Tor biotype reacted in high titre with the MSHA-coated cells, whereas antisera against vibrios of the classical biotype did not bind significantly, i.e. in higher titre than pre-immune sera. The binding of anti-MSHA serum, or a monoclonal antibody against MSHA, to the MSHA-coated erythrocytes could be efficiently inhibited by crude MSHA as well as by El Tor vibrios whereas neither V. cholerae lipopolysaccharide nor different strains of classical vibrios had any inhibitory effect. These results support the existence of an El Tor-associated immunogen. They also suggest a possibility of determining antibodies against different haemagglutinins in ELISA without having access to purified antigens.  相似文献   

15.
The bacterial chromosomal replication origin (ori) sequences are a highly conserved essential genetic element. In this study, the large chromosomal replication origin sequence of Vibrio cholerae (oriCIVC) has been targeted for identification of the organism, including the biotypes of serogroup O1. The oriCIVC sequence-based PCR assay specifically amplified an 890 bp fragment from all the V. cholerae strains examined. A point mutation in the oriCIVC sequence of the classical biotype of O1 serogroup led to the loss of a BglII site, which was utilized for differentiation from El Tor vibrios. Interestingly, the PCR assay amplified a similarly sized ori segment, designated as oriCIVM, from V. mimicus strains, but failed to produce any amplicon with other strains. Cloning and sequencing of the oriCIVM revealed high sequence similarity (96%) with oriCIVC. The results indicate that V. mimicus is indeed very closely related to V. cholerae. In addition, the BglII restriction fragment length polymorphism (RFLP) between oriCIVM and oriCIVC sequences allowed us to differentiate the two species. The ori sequence-based PCR-RFLP assay developed in this study appears to be a useful method for rapid identification and differentiation of V. cholerae and V. mimicus strains, as well as for the delineation of classical and El Tor biotypes of V. cholerae O1.  相似文献   

16.
IrgA is an iron-regulated virulence factor for infection in an animal model with classical Vibrio cholerae strain 0395. We detected gene sequences hybridizing to irgA at high stringency in clinical isolates in addition to 0395, including another classical strain of V. cholerae, three V. cholerae strains of the El Tor biotype, three non-O1 isolates of V. cholerae, and individual isolates of Vibrio parahaemolyticus, Vibrio fluvialis, and Vibrio alginolyticus. No hybridization to irgA was seen with chromosomal DNA from Vibrio vulnificus or Aeromonas hydrophila. To verify that irgA is the structural gene for the major iron-regulated outer membrane protein of V. cholerae, we determined the amino-terminal sequence of this protein recovered after gel electrophoresis and demonstrated that it corresponds to the amino acid sequence of IrgA deduced from the nucleotide sequence. Gel electrophoresis showed that two El Tor strains of V. cholerae had a major iron-regulated outer membrane protein identical in size and appearance to IrgA in strain 0395, consistent with the findings of DNA hybridization. We have previously suggested that IrgA might be the outer membrane receptor for the V. cholerae siderophore, vibriobactin. Biological data presented here, however, show that a mutation in irgA had no effect on the transport of vibriobactin and produced no defect in the utilization of iron from ferrichrome, ferric citrate, haemin or haemoglobin. The complete deduced amino acid sequence of IrgA demonstrated homology to the entire class of Escherichia coli TonB-dependent proteins, particularly Cir. Unlike the situation with Cir, however, we were unable to demonstrate a role for IrgA as a receptor for catechol-substituted cephalosporins. The role of IrgA in the pathogenesis of V. cholerae infection, its function as an outer membrane receptor, and its potential interaction with a TonB-like protein in V. cholerae remain to be determined.  相似文献   

17.
Vibrio cholerae strains isolated from patient, food and environmental sources in Taiwan and reference V. cholerae strains were examined by repetitive element sequence-based PCR (rep-PCR). Specimens from broth cultures were used directly in the PCR mixture with three different primers. The PCR fingerprinting profiles of toxigenic 01 isolates were not only homogeneous with primers from enterobacterial repetitive intergenic consensus (ERIC) sequences, but also allowed the differentiation from non-toxigenic O1 and non-O1 strains. Toxigenic 01 strains were further differentiated into El Tor and classical biotypes with primers designed from ERIC-related sequences of V. cholerae. Primers from the other V. cholerae repetitive DNA sequences, VCR, separated toxigenic El Tor strains into six groups and a unique pattern was also obtained in 16 isolates from imported cases of cholera and imported seafood. The results indicated that rep-PCR can be used to identify and differentiate different toxigenic 01, non-toxigenic 01 and non-O1 V. cholerae isolates.  相似文献   

18.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

19.
20.
Pang B  Zheng X  Diao B  Cui Z  Zhou H  Gao S  Kan B 《PloS one》2011,6(8):e24267
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号