首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of (E)-2-alkyl-2-(4-methanesulfonylphenyl)-1-phenylethenes were designed for evaluation as selective cyclooxygense-2 (COX-2) inhibitors. The target olefins were synthesized, via a Takeda olefination reaction, followed by oxidation of the respective thiomethyl olefinic intermediate. In vitro COX-1/COX-2 inhibition studies identified (E)-2-(4-methanesulfonylphenyl)-1-phenyloct-1-ene (8d) as a potent (IC(50)=0.77 microM) and selective (Selectivity Index>130) COX-2 inhibitor.  相似文献   

2.
A group of acyclic 2-alkyl-1,1-diphenyl-2-(4-methylsulfonylphenyl)ethenes was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition structure-activity studies identified 1,1-diphenyl-2-(4-methylsulfonylphenyl)hex-1-ene as a highly potent (IC(50) = 0.014 microM), and an extremely selective [COX-2 selectivity index (SI) > 7142], COX-2 inhibitor that showed superior anti-inflammatory (AI) activity (ID(50) = 2.5 mg/kg) relative to celecoxib (ID(50) = 10.8 mg/kg). This initial study was extended to include the design of a structurally related group of acyclic triaryl (Z)-olefins possessing an acetoxy (OAc) substituent at the para-position of the C-1 phenyl ring that is cis to a C-2 4-methylsulfonylphenyl substituent. COX-1 and COX-2 inhibition studies showed that (Z)-1-(4-acetoxyphenyl)-1-phenyl-2-(4-methylsulfonylphenyl)but-1-ene [(Z)-13b] is a potent (COX-1 IC(50) = 2.4 microM; COX-2 IC(50) = 0.03 microM), and selective (COX-2 SI = 81), COX-2 inhibitor which is a potent AI agent (ID(50) = 4.1mg/kg) with equipotent analgesic activity to celecoxib. A molecular modeling (docking) study showed that the SO(2)Me substituent of (Z)-13b inserts deep inside the 2 degrees -pocket of the COX-2 active site, where one of the O-atoms of SO(2) group undergoes a H-bonding interaction with Phe(518). The p-OAc substituent on the C-1 phenyl ring is oriented in a hydrophobic pocket comprised of Met(522), Gly(526), Trp(387), Tyr(348), and Tyr(385), and the C-2 ethyl substituent is oriented towards the mouth of the COX-2 channel in the vicinity of amino acid residues Arg(120), Leu(531), and Val(349). Structure-activity data acquired indicate that a (Z)-olefin having cis C-1 4-acetoxyphenyl (phenyl) and C-2 4-methylsulfonylphenyl substituents, and a C-1 phenyl substituent in conjunction with either a C-2 hydrogen or short alkyl substituent provides a novel template to design acyclic olefinic COX-2 inhibitors that, like aspirin, have the potential to acetylate COX-2.  相似文献   

3.
A group of regioisomeric (E)-1,3-diarylprop-2-en-1-one derivatives possessing a COX-2 SO2Me pharmacophore at the para position of the C-1 or C-3 phenyl ring, in conjunction with a C-3 or C-1 phenyl (4-H) or substituted-phenyl ring (4-F, 4-OMe and 4-Me), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target (E)-1,3-diarylprop-2-en-1-ones were synthesized via a Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified (E)-1-(4-methanesulfonylphenyl)-3-(4-methylphenyl)prop-2-en-1-one (9f) as a potent COX-2 inhibitor (IC50=0.3 microM) with a high COX-2 selectivity index (SI=106) comparable to that of the reference drug rofecoxib (COX-2 IC50=0.5 microM; COX-2 SI>200). A molecular modeling study where 9f was docked in the binding site of COX-2 showed that the para-SO2Me substituent on the C-1 phenyl ring is oriented in the vicinity of the secondary COX-2 binding site near Val523. The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design novel acyclic 1,3-diarylprop-2-en-1-ones with selective COX-2 inhibitory activity.  相似文献   

4.
A group of (E)-1,3-diphenylprop-2-en-1-one derivatives (chalcones) possessing a MeSO(2)NH, or N(3), COX-2 pharmacophore at the para-position of the C-1 phenyl ring were synthesized using a facile stereoselective Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 structure-activity relationships were determined by varying the substituents on the C-3 phenyl ring (4-H, 4-Me, 4-F, and 4-OMe). Among the 1,3-diphenylprop-2-en-1-ones possessing a C-1 para-MeSO(2)NH COX-2 pharmacophore, (E)-1-(4-methanesulfonamidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7b) was identified as a selective COX-2 inhibitor (COX-2 IC(50)=1.0 microM; selectivity index >100) that was less potent than the reference drug rofecoxib (COX-2 IC(50)=0.50 microM; SI>200). The corresponding 1,3-diphenylprop-2-en-1-one analogue possessing a C-1 para-N(3) COX-2 pharmacophore, (E)-1-(4-azidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7f), exhibited potent and selective COX-2 inhibition (COX-1 IC(50)=22.2 microM; COX-2 IC(50)=0.3 microM; SI=60). A molecular modeling study where 7b and 7f were docked in the binding site of COX-2 showed that the p-MeSO(2)NH and N(3) substituents on the C-1 phenyl ring are oriented in the vicinity of the COX-2 secondary pocket (His90, Arg513, Phe518, and Val523). The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design new acyclic 1,3-diphenylprop-2-en-1-ones with selective COX-1 or COX-2 inhibitory activity.  相似文献   

5.
A group of 1-(aminosulfonylphenyl and methylsulfonylphenyl)-2-(pyridyl)acetylene regioisomers were designed such that a COX-2 SO2NH2 pharmacophore was located at the para-position of the phenyl ring, or a SO2Me pharmacophore was placed at the ortho-, meta- or para-position of the phenyl ring, on an acetylene template (scaffold). The point of attachment of the pyridyl ring to the acetylene linker was simultaneously varied (2-pyridyl, 3-pyridyl, 4-pyridyl, 3-methyl-2-pyridyl) to determine the combined effects of positional, steric, and electronic substituent properties upon COX-1 and COX-2 inhibitory potency and COX isozyme selectivity. These target linear 1-(phenyl)-2-(pyridyl)acetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. Structure-activity relationship (SAR) data (IC50 values) acquired by determination of the in vitro ability of the title compounds to inhibit the COX-1 and COX-2 isozymes showed that the position of the COX-2 SO2NH2 or SO2Me pharmacophore on the phenyl ring, and the point of attachment of the pyridyl ring to the acetylene linker, were either individual, or collective, determinants of COX-2 inhibitory potency and selectivity. A number of compounds discovered in this study, particularly 1-(4-aminosulfonylphenyl)-2-(3-methyl-2-pyridyl)acetylene (22), 1-(3-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (27), 1-(3-methanesulfonylphenyl)-2-(4-pyridyl)acetylene (29), 1-(4-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (30), and 1-(4-methanesulfonylphenyl)-2-(3-pyridyl)acetylene (31), exhibit potent (IC50 = 0.04-0.33 microM range) and selective (SI = 18 to >312 range) COX-2 inhibitory activities, that compare favorably with the reference drug celecoxib (COX-2 IC50 = 0.07 microM; COX-2 SI = 473). The sulfonamide (22), and methylsulfonyl (27 and 31), compounds exhibited anti-inflammatory activities (ID50 = 59.9-76.6 mg/kg range) that were intermediate in potency between the reference drugs aspirin (ID50 = 128.7 mg/kg) and celecoxib (ID50 = 10.8 mg/kg).  相似文献   

6.
A group of (E)-3-(4-methanesulfonylphenyl)acrylic acids possessing a substituted-phenyl ring (4-H, 4-Br, 3-Br, 4-F, 4-OH, 4-OMe, 4-OAc, and 4-NHAc) attached to the acrylic acid C-2 position were prepared using a stereospecific Perkin condensation reaction. A related group of compounds having 4- and 3-(4-isopropyloxyphenyl)phenyl, 4- and 3-(2,4-difluorophenyl)phenyl and 4- and 3-(4-methanesulfonylphenyl)phenyl substituents attached to the acrylic acid C-2 position were also synthesized, using a palladium-catalyzed Suzuki cross-coupling reaction, for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. (E)-2-(3-Bromophenyl)-3-(4-methanesulfonylphenyl)acrylic acid (9h), and compounds having 4-(4-isopropyloxyphenyl-, 2,4-difluorophenyl-, or 4-methylsulfonylphenyl)phenyl moieties at the acrylic acid C-2 position (11a,b,d), were particularly potent COX-2 inhibitors with a high COX-2 selectivity index (COX-2 IC50 approximately 0.32 microM, SI > 316) similar to the reference drug rofecoxib (COX-2 IC50 = 0.5 microM, SI > 200). Acrylic acid analogs with a C-2 4-hydoxyphenyl (9d, IC50 = 0.56 microM), or 4-acetamidophenyl (9g, IC50 = 0.11 microM), substituent were particularly potent 5-LOX inhibitors that may participate in an additional specific hydrogen-bonding interaction. A number of compounds possessing a C-2 substituted-phenyl moiety (4-Br, 4-F, and 4-OH), or a 4- or 3-(2,4-difluorophenyl)phenyl moiety, showed potent 15-LOX inhibitory activity (IC50 values in the 0.31-0.49 microM range) relative to the reference drug luteolin (IC50 = 3.2 microM). Compounds having a C-2 4-acetylaminophenyl, or 4-(2,4-difluorophenyl)phenyl, moiety exhibited anti-inflammatory activities that were equipotent to aspirin, but less than that of celecoxib. The structure-activity data acquired indicate the acrylic acid moiety constitutes a suitable scaffold (template) to design novel acyclic dual inhibitors of the COX and LOX isozymes.  相似文献   

7.
A series of 3-(2-methoxytetrahydrofuran-2-yl)pyrazoles (4–10) was synthesized. The compounds were evaluated for their ability to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) activity in human whole blood (HWB). The compound, 5-(4-methanesulfonylphenyl)-3-(2-methoxytetrahydrofuran-2-yl)-1-p-tolyl-1H-pyrazole 5 showed potent and selective COX-2 inhibition (IC50 for COX-1: >100 μM and COX-2: 1.2 μM).  相似文献   

8.
A group of 1,3-diarylurea derivatives, possessing a methylsulfonyl pharmacophore at the para-position of the N-1 phenyl ring, in conjunction with a N-3 substituted-phenyl ring (4-F, 4-Cl, 4-Me, 4-OMe), were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl) urea (4e) as a potent COX-2 inhibitor (IC(50)=0.11 microM) with a high COX-2 selectivity index (SI=203.6) comparable to the reference drug celecoxib (COX-2 IC(50)=0.06 microM; COX-2 SI=405). The structure-activity data acquired indicate that the urea moiety constitutes a suitable scaffold to design new acyclic 1,3-diarylurea derivatives with selective COX-2 inhibitory activity.  相似文献   

9.
A group of novel (Z)-1,2-diphenyl-1-(4-methanesulfonamidophenyl)alk-1-enes was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 enzyme inhibition studies identified (Z)-1,2-diphenyl-1-(4-methanesulfonamidophenyl)oct-1-ene (8d) as a highly potent (IC50=0.03 microM), and an extremely selective [COX-2 SI (selectivity index)>3,333], COX-2 inhibitor that showed good anti-inflammatory (AI) activity (ID50=2.8 mg/kg). A molecular modeling (docking) study showed that the p-MeSO2NH group present in (Z)-8d inserts deep inside the 2 degrees-pocket of the COX-2 binding site, it undergoes a hydrophobic interaction with Ala516 and Gly519, and one of the O-atoms of the MeSO2 group participates in a weak hydrogen bonding interaction with the NH2 of Arg513 (distance= 3.85 angstroms). Similar in vitro COX-1/COX-2 enzyme inhibition studies showed that the azido compound 1-(4-azidophenyl)-1,2-diphenyloct-1-ene (9c) is also a potent and selective COX-2 inhibitor (COX-2 IC50=0.11 microM: SI>909) that exhibits good AI activity (ID50=5.0 mg/kg). A docking experiment to determine the orientation of (Z)-9c within the COX-2 binding site showed that the linear p-N3 group inserts into the COX-2 2 degrees-pocket, where it undergoes an ion-ion (electrostatic) interaction with Arg513. Structure-activity data acquired indicate that an olefin having either a C-1 p-MeSO2NH-phenyl, or a p-N3-phenyl, substituent, that is, cis to a C-2 unsubstituted phenyl substituent, in conjunction with C-1 unsubstituted phenyl and C-2 alkyl substituents, provides a novel template to design acyclic olefinic COX-2 inhibitors.  相似文献   

10.
11.
A group of N-acetyl-2-(or 3-)carboxymethylbenzenesulfonamides, possessing either a F or a substituted-phenyl ring substituent (4-F, 2,4-F2, 4-SO2Me, 4-OCHMe2) attached to its C-4 or C-6 position, was prepared using a palladium-catalyzed Suzuki cross-coupling reaction for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. Although N-acetyl-3-carboxymethyl-6-fluorobenzenesulfonamide [14, COX-1 IC50 = 2.26 microM; COX-2 IC50 = 0.012 microM; COX-2 selectivity index (SI) = 188] and N-acetyl-3-carboxymethyl-6-(4-isopropoxyphenyl)benzenesulfonamide (20c, COX-1 IC50 >100 microM; COX-2 IC50 = 0.15 microM; COX-2 SI >667) exhibited potent in vitro COX-2 inhibitory activity and high COX-2 selectivity, both compounds were inactive anti-inflammatory agents in a carrageenan-induced rat paw edema assay. In contrast, the less potent and less selective COX-2 inhibitors N-acetyl-2-carboxymethyl-4-fluorobenzenesulfonamide (12, COX-1 IC50 = 4.25 microM; COX-2 IC50 = 0.978 microM; COX-2 SI = 4.3), N-acetyl-2-carboxymethyl-4-(2,4-difluorophenyl)benzenesulfonamide (17c, COX-1 IC50 = 1.02 microM; COX-2 IC50 = 1.00 microM; COX-2 SI = 1.02), and N-acetyl-3-carboxymethyl-6-(4-methanesulfonylphenyl)benzenesulfonamide (20e, COX-1 IC50 = 0.109 microM; COX-2 IC50 = 1.14 microM; COX-2 SI = 0.095) exhibited moderate anti-inflammatory activity where a 75 mg/kg oral dose reduced inflammation 26%, 14%, and 20%, respectively, at 3 h postdrug administration relative to the reference drug aspirin where a 50 mg/kg oral dose reduced inflammation by 25% at 3 h postdrug administration.  相似文献   

12.
N-Acetyl-2-carboxybenzenesulfonamide (11), and a group of analogues possessing an appropriately substituted-phenyl substituent (4-F, 2,4-F(2), 4-SO(2)Me, 4-OCHMe(2)) attached to its C-4, or C-5 position, were synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 inhibition studies showed that 11 is a more potent inhibitor (COX-1 IC(50)=0.06microM; COX-2 IC(50)=0.25microM) than aspirin (COX-1 IC(50)=0.35microM; COX-2 IC(50)=2.4microM), and like aspirin [COX-2 selectivity index (S.I.)=0.14], 11 is a nonselective COX-2 inhibitor (COX-2 S.I.=0.23). Regioisomers having a 2,4-difluorophenyl substituent attached to the C-4 (COX-2 IC(50)=0.087microM; COX-2 S.I. >1149), or C-5 (COX-2 IC(50)=0.77microM, SI>130), position of 11 exhibited the most potent and selective COX-2 inhibitory activity relative to the reference drug celecoxib (COX-1 IC(50)=33.1microM; COX-2 IC(50)=0.07microM; COX-2 S.I.=472). N-Acetyl-2-carboxybenzenesulfonamide (11, ED(50)=49 mg/kg), and its C-4 2,4-difluorophenyl derivative (ED(50)=91 mg/kg), exhibited superior antiinflammatory activity (oral dosing) in a carrageenan-induced rat paw edema assay compared to aspirin (ED(50)=129 mg/kg). These latter compounds exhibited comparable analgesic activity to the reference drug diflunisal, and superior analgesic activity compared to aspirin, in a 4% NaCl-induced abdominal constriction assay. A molecular modeling (docking) study indicated that the SO(2)NHCOCH(3) substituent present in N-acetyl-2-carboxy-4-(2,4-fluorophenyl)benzenesulfonamide, like the acetoxy substituent in aspirin, is suitably positioned to acetylate the Ser(530) hydroxyl group in the COX-2 primary binding site. The results of this study indicate that the SO(2)NHCOCH(3) pharmacophore present in N-acetyl-2-carboxybenzenesulfonamides is a suitable bioisostere for the acetoxy (OCOMe) group in aspirin.  相似文献   

13.
A group of regioisomeric 1-(methylsulfonylphenyl)-2-phenylacetylenes possessing a COX-2 SO(2)Me pharmacophore at the para-, meta- or ortho-position of the C-1 phenyl ring, in conjunction with a C-2 phenyl or substituted-phenyl ring substituent (3-F, 3-OMe, 3-OH, 3-OAc, 4-Me), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target linear 1,2-diarylacetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction followed by oxidation of the respective 1-(methylthiophenyl)-2-phenylacetylene intermediate. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(3-methylsulfonylphenyl)-2-(4-methylphenyl)acetylene (12d) as a potent COX-2 inhibitor (IC(50) = 0.32 microM) with a high COX-2 selectivity index (SI > 320) comparable to the reference compound rofecoxib (COX-2 IC(50) = 0.50 microM; COX-2 SI > 200). A molecular modeling study where (12d) was docked in the binding site of COX-2 showed that the MeSO(2) COX-2 pharmacophore was positioned in the vicinity of the secondary COX-2 binding site near Val(523). The 1-(4-methylsulfonylphenyl)-2-(3-acetoxyphenyl)acetylene (11f, COX-1 IC(50) = 1.00 microM; COX-2 IC(50) = 0.06 microM; COX-2 SI = 16.7) and 1-(3-methylsulfonylphenyl)-2-(3-acetoxyphenyl)acetylene (12f, COX-1 IC(50) = 6.5 microM; COX-2 IC(50) = 0.05 microM; COX-2 SI = 130) regioisomers exhibited comparable COX-2 inhibition, and moderately lower selective COX-2 selectivity, relative to the reference drug celecoxib (COX-1 IC(50) = 33.1 microM; COX-2 IC(50) = 0.07 microM; COX-2 SI = 472). The most potent anti-inflammatory agent 1-(3-methylsulfonylphenyl)-2-(4-methylphenyl)acetylene (12d) exhibited moderate oral anti-inflammatory activity (ED(50)= 129 mg/kg) at 3 h postdrug administration relative to the reference drug celecoxib (ED(50) = 10.8 mg/kg) in a carrageenan-induced rat paw edema assay. The structure-activity data acquired indicate that the acetylene moiety constitutes a suitable scaffold (template) to design novel acyclic 1,2-diarylacetylenes with selective COX-2, or dual COX-1/COX-2, inhibitory activities.  相似文献   

14.
Ovarian steroids modulate uterine receptivity in domestic species. Luteinizing hormone (LH) stimulates prostaglandin (PG)F(2alpha) release from the porcine endometrium. However, the combined action of LH and steroids on PGs secretion has not yet been studied in pigs. The aim of the present study was to examine the effect of estradiol (E(2)) and progesterone (P(4)) on basal and LH-stimulated PGF(2alpha) and PGE(2) secretion and cyclooxygenase-2 (COX-2) protein expression in porcine endometrial stromal cells obtained on days 12-13 of the estrous cycle. Cells were cultured for 48 h in a medium containing charcoal-stripped newborn calf serum alone or supplemented with 10 nM E(2) and/or 50 nM P(4). Then, the cells were incubated for 6 h in the presence or absence of LH (20 ng/ml). Long exposure of stromal cells to steroids had no effect on PGF(2alpha) secretion, but PGE(2) release increased in the presence of E(2) plus P(4) (p<0.05). Pre-incubation of cells with E(2) plus P(4) resulted in enhanced PGF(2alpha) (p<0.05) and PGE(2) (p<0.001) secretion. Moreover, LH increased PG(2alpha) secretion in control (p<0.05) and E(2)-treated stromal cells (p<0.01). LH tended (p=0.07) to elevate PGE(2) release only in cells pre-exposed to E(2) plus P(4). The expression of COX-2 protein was increased by LH (p<0.05), but not by steroids. These results confirm the stimulatory effect of LH on PGF(2alpha) secretion and COX-2 expression in porcine stromal cells before luteolysis. PG release from porcine endometrium seems to be controlled by ovarian steroids, however only E(2)-treated-treated cells responded to LH.  相似文献   

15.
A new class of acyclic 1,1-diphenyl-2-(4-methylsulfonylphenyl)-2-alkyl-1-ethenes were synthesized, via a short two-step McMurry olefination reaction and then oxidation of the thiomethyl intermediate using Oxone, in 62-76% yield. The title compounds possess identical C-1 phenyl substituents which precludes the possibility of (Z)- and (E)-stereoisomers. 1,1-Diphenyl-2-(4-methylsulfonylphenyl)hex-1-ene exhibited highly potent (IC(50)=0.014 microM) and selective COX-2 (Selectivity Index >7142) inhibitory activity.  相似文献   

16.
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.  相似文献   

17.
Prostaglandin E(2) (PGE(2)) has been implicated in the regulation of inflammatory and immunological events. Using RAW 264.7 macrophages, the present study investigates the influence of PGE(2) on the expression of cyclooxygenase-2 (COX-2). Incubation of cells with PGE(2) increased lipopolysaccharide (LPS)-induced COX-2 mRNA levels in a concentration-dependent manner. Upregulation of COX-2 expression by PGE(2) was completely abolished by the specific adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and mimicked by butaprost, a selective agonist of the adenylyl cyclase-coupled PGE(2) receptor subtype 2 (EP(2)), or 11-deoxy PGE(1), an EP(2)/EP(4) receptor agonist. By contrast, the EP(3)/EP(1) receptor agonists 17-phenyl-omega-trinor PGE(2) and sulprostone left LPS-induced COX-2 expression virtually unaltered. Upregulation of LPS-induced COX-2 expression and subsequent PGE(2) synthesis was also observed in the presence of the cell-permeable cAMP analogue dibutyryl cAMP and the adenylyl cyclase activator cholera toxin. Together, our data demonstrate that PGE(2) potentiates COX-2 mRNA expression via an adenylyl cyclase/cAMP-dependent pathway. In conclusion, upregulation of COX-2 expression via an autocrine feed-forward loop may in part contribute to the well-known capacity of PGE(2)/cAMP to modulate inflammatory processes.  相似文献   

18.
Cyclooxygenase-2 (COX-2)-dependent prostaglandin E(2) (PGE(2)) synthesis correlates with the onset of proteinuria and increased glomerular capillary pressure (P(gc)) glomerular disease models. We previously showed that an in vitro surrogate for P(gc) (cyclical mechanical stretch) upregulates the expression of both COX-2 and the PGE(2) responsive E-Prostanoid receptor, EP(4) in cultured mouse podocytes. In the present study we further delineate the signaling pathways regulating podocyte COX-2 induction. Time course experiments carried out in conditionally-immortalized mouse podocytes revealed that PGE(2) transiently increased phosphorylated p38 MAPK levels at 10 min, and induced COX-2 protein expression at 4 h. siRNA-mediated knockdown of EP(4) receptor expression, unlike treatment with the EP(1) receptor antagonist SC 19220, completely abrogated PGE(2)-induced p38 phosphorylation and COX-2 upregulation suggesting the involvement of the EP(4) receptor subtype. PGE(2)-induced COX-2 induction was abrogated by inhibition of either p38 MAPK or AMP activated protein kinase (AMPK), and was mimicked by AICAR, a selective AMPK activator, and by the cAMP-elevating agents, forskolin (FSK) and IBMX. Surprisingly, neither PGE(2) nor FSK/IBMX-dependent p38 activation and COX-2 expression were blocked by PKA inhibitors or mimicked by 8-cPT-cAMP a selective EPAC activator, but were instead abrogated by Compound C, suggesting the involvement of AMPK. These results indicate that in addition to mechanical stretch, PGE(2) initiates a positive feedback loop in podocytes that drives p38 MAPK activity and COX-2 expression through a cAMP/AMPK-dependent, but PKA-independent signaling cascade. This PGE(2)-induced signaling network activated by increased P(gc) could be detrimental to podocyte health and glomerular filtration barrier integrity.  相似文献   

19.
New series of 2-(4-methylsulfonylphenyl) and 2-(4-sulfamoylphenyl)pyrimidines were synthesized and evaluated for their ability to inhibit cyclooxygenase-2 (COX-2). COX-1 and COX-2 inhibitory activity of these compounds was determined using purified enzyme (PE) and human whole blood (HWB) assays. Extensive structure-activity relationship (SAR) work was carried out within these series, and a wide number of potent and specific COX-2 inhibitors were identified (HWB COX-2 IC(50)=2.4-0.3nM and 80- to 780-fold more selective than rofecoxib).  相似文献   

20.
A novel group of hybrid nitric oxide-releasing anti-inflammatory drugs (11) possessing a 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, or 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, nitric oxide (.NO) donor moiety attached via a one-carbon methylene spacer to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. These ester prodrugs (11) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.94-31.6 microM range). All compounds released .NO upon incubation with phosphate buffer (PBS) at pH 7.4 (3.2-11.3% range). In comparison, the percentage of .NO released was significantly higher (48.6-75.3% range) when these hybrid ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both .NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases. O(2)-[(E)-2-(4-Acetylaminophenyl)-3-(4-methanesulfonylphenyl)acryloyloxymethyl]-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11f) is a moderately potent (IC(50)=0.94 microM) and selective (SI>104) COX-2 inhibitor that released 73% of the theoretical maximal release of two molecules of .NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester .NO-donor prodrugs offer a potential drug design concept for the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号