首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have followed the development of the O-2A progenitor cell from the neonatal rat forebrain, both in dissociated cell culture and in cryostat sections, using immunocytochemical techniques employing a panel of antibodies that recognise the cells at different stages of their development. This included the monoclonal antibody LB1, which binds to the surface ganglioside GD3 expressed on O-2A progenitor cells. In secondary cultures enriched for O-2A progenitors maintained in a serum-free chemically defined medium, a large proportion of the cells are primed to differentiate into oligodendroglia and go on to express the oligodendroglial specific surface glycolipid galactocerebroside (GC) and then the myelin proteins CNP and MBP. However, a significant proportion of immature bipolar GD3+ cells remained after 6 days in secondary culture. It appears that not all the O-2A progenitors in our cultures differentiate immediately and some cells remain in an undifferentiated state and divide to replenish progenitor numbers. We have also identified in our cultures a small apolar GD3- cell, which when isolated differentiated into a GD3+ bipolar O-2A progenitor cell. We have termed this cell type a preprogenitor. The differentiation of this cell type into O-2A progenitors may be the source of the immature GD3+ cells present at the later stages of our secondary cultures. The proliferative profile of the cultures was studied using 5'bromo-2-deoxyuridine (BrdU) incorporation as an index of mitosis. Only the immature, bipolar O-2A progenitors were seen to divide at any time in serum-free culture. Neither the more mature multipolar O-2A cells nor the oligodendroglia were seen to divide. The developmental profile of the O-2A cells in the rat forebrain in vivo showed a largely similar progression to that in culture, with a time lag of at least 6 days between GD3 expression and the onset of myelination. BrdU incorporation studies in vivo also showed that the GD3+ progenitor cell is mitotic whereas the GC(+)-expressing oligodendroglia is not. We have shown that there are several significant alterations in the timing of antigen expression in both O-2A progenitors and oligodendroglia in vitro compared to that seen in vivo.  相似文献   

2.
Abstract— Border disease (BD) of sheep is caused by a virus in the genus Pestivirus that results in decreased myelination throughout the CMS when acquired congenitally. Pregnant ewes were inoculated with BD virus at 50 days of gestation, and myelin proteins were quantified in several regions of the CNS during prenatal and postnatal development of infected lambs for comparison with age-matched controls. Newborn field-infected lambs were also examined. Myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) were measured by densitometric scanning of western blots. Deficiencies in the myelin proteins were detected as early as 116 days of gestation, and the deficiencies of myelin proteins were most pronounced in the cerebellum at all ages examined. PLP and MBP increased from 10–30% of normal in cerebellar white matter at birth to 40–60% of normal at 6 months, suggesting some catch-up in the amount of compact myelin with development. MAG and CNP were between 70 and 80% of control levels in the cerebellum at birth and at 6 months. Similar results were obtained for the corpus callosum and spinal cord of infected lambs, but the deficiencies of myelin proteins were not as great. A common finding in all regions examined was that MBP and PLP were reduced more than MAG and CNP. This is probably explained by a greater deficit of compact myelin, in which MBP and PLP are localized, than of associated oli-godendroglial membranes, in which MAG and CNP are concentrated. Similar results have been obtained in several dysmyelinating mutants, pointing to common factors in virally and genetically caused hypomyelination. Key Words: Border disease—Myelin—Hypomyelination—Development—Sheeo.  相似文献   

3.
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Abnormal myelin formation appears to be one defect contributing to the neuropathology associated with the fetal alcohol syndrome, the major cause of noncongenital mental retardation. Using the CG‐4 cell line we previously showed that 25–75 mm ethanol (EtOH) down‐regulates myelin basic protein (MBP) expression in differentiating oligodendrocytes (OLGs) without affecting the 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase (CNP) expression or morphological development (Bichenkov and Ellingson 2001). Here we observed that a relatively low concentration of 12‐phorbol‐13‐myristate acetate (PMA) mimicked the EtOH‐caused inhibition of MBP expression without affecting CNP expression or morphology. The inhibition of MBP expression by 100 mm EtOH or 1 nm PMA was completely counteracted by three inhibitors of protein kinase C (PKC); bisinodoylmaleimide I, chelerythrine chloride, and calphostin C, indicating that EtOH down‐regulated MBP expression by activating PKC. We investigated whether the EtOH‐caused activation resulted in part from up‐regulation of the expression of PKC isozymes. Of 11 PKC isozymes examined, CG‐4 OLGs expressed nine; PKC α, β1, β2, δ, ε, λ, μ, nu and zeta; while PKC isozymes γ and theta were not detected. Only five PKC isozymes, α, β1, β2, μ, and nu, displayed developmental changes in expression. However, EtOH did not up‐regulate the early expression of any PKC isozyme during the first two days of differentiation, the developmental stage when it down‐regulates the MBP expression in CG‐4 cells. The results indicate that EtOH delays MBP expression by activating at least one phorbol ester‐sensitive PKC isozyme in differentiating oligodendrocytes without up‐regulating its expression. Acknowledgements: Support: NIAAA Grant AA072185.  相似文献   

6.
目的:探讨大鼠产前850~1 900 MHz手机辐射对成年子代小脑白质的影响。方法:孕鼠随机分为短时产前手机辐射组、长时产前手机辐射组和对照组,短时和长时辐射组于孕期第1~17日分别进行每天6 h和24 h手机辐射,各组雄性子代大鼠(n=8)于3月龄取小脑组织,进行苏木精-伊红(HE)染色观察小脑皮质细胞形态,免疫组化和Western blot检测髓鞘碱性蛋白(MBP)、神经微丝-L(NF-L)和胶质纤维酸性蛋白(GFAP)表达。结果:与对照组比较,短时程和长时程产前手机辐射组子代大鼠小脑浦肯野细胞出现形态学改变;与对照组比较,长时程辐射组MBP、NF-L表达明显减少(P均<0.05),而GFAP表达明显增多(P<0.05);与短时程辐射组比较,长时程组子代大鼠小脑MBP、NF-L表达明显减少(P均<0.05),而GFAP表达明显增多(P<0.05)。结论:产前手机辐射会导致雄性子代大鼠小脑髓鞘和轴突的损害,以及星形胶质细胞的活化,且这种改变与产前手机辐射的时程相关。  相似文献   

7.
A new class of procedures, previously shown to permit the isolation of pure oligodendroglia from whole rat cerebrum, has been applied with equal or greater success for the bulk isolation of this cell type from bovine white matter. Thus, the generality of this approach has been demonstrated. The bovine preparations have a purity of greater than 90% intact, phase-bright oligodendroglia and are obtained in a yield of 8 x 10(6) cells per gram of white matter. Within 1 day it is possible to obtain a preparation containing 60 mg of protein from a single cell type. These cells show a higher degree of ultrastructural preservation of all cytoplasmic constituents than previously obtained. The values for protein (33 pg/cell), DNA (5.4 pg/cell), and lipid (5-6 pg/cell) are very similar to those obtained with an earlier procedure. The cell lipids are rich in galactolipid, which comprises 20% of the total. The activity of the "myelin-specific" enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37), is 4.7 mumol/min/mg protein, similar to that obtained previously for isolated oligodendroglia and about 25-40% of that found in myelin. The activity of 5'-nucleotidase (EC 3.1.3.5) in the cells is about 10% of that in myelin or white matter.  相似文献   

8.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

9.
Abnormal myelin formation appears to be one defect contributing to the neuropathology associated with the fetal alcohol syndrome, the major cause of noncongenital mental retardation. Using the CG-4 cell line we previously showed that 25–75 m m ethanol (EtOH) down-regulates myelin basic protein (MBP) expression in differentiating oligodendrocytes (OLGs) without affecting the 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) expression or morphological development (Bichenkov and Ellingson 2001). Here we observed that a relatively low concentration of 12-phorbol-13-myristate acetate (PMA) mimicked the EtOH-caused inhibition of MBP expression without affecting CNP expression or morphology. The inhibition of MBP expression by 100 m m EtOH or 1 n m PMA was completely counteracted by three inhibitors of protein kinase C (PKC); bisinodoylmaleimide I, chelerythrine chloride, and calphostin C, indicating that EtOH down-regulated MBP expression by activating PKC. We investigated whether the EtOH-caused activation resulted in part from up-regulation of the expression of PKC isozymes. Of 11 PKC isozymes examined, CG-4 OLGs expressed nine; PKC α, β1, β2, δ, ε, λ, μ, nu and zeta; while PKC isozymes γ and theta were not detected. Only five PKC isozymes, α, β1, β2, μ, and nu, displayed developmental changes in expression. However, EtOH did not up-regulate the early expression of any PKC isozyme during the first two days of differentiation, the developmental stage when it down-regulates the MBP expression in CG-4 cells. The results indicate that EtOH delays MBP expression by activating at least one phorbol ester-sensitive PKC isozyme in differentiating oligodendrocytes without up-regulating its expression.
Acknowledgements:   Support: NIAAA Grant AA072185.    相似文献   

10.
11.
Both late-gestation and adult human forebrain contain large numbers of oligodendrocyte progenitor cells (OPCs). These cells may be identified by their A2B5(+)PSA-NCAM(-) phenotype (positive for the early oligodendrocyte marker A2B5 and negative for the polysialylated neural cell adhesion molecule). We used dual-color fluorescence-activated cell sorting (FACS) to extract OPCs from 21- to 23-week-old fetal human forebrain, and A2B5 selection to extract these cells from adult white matter. When xenografted to the forebrains of newborn shiverer mice, fetal OPCs dispersed throughout the white matter and developed into oligodendrocytes and astrocytes. By 12 weeks, the host brains showed extensive myelin production, compaction and axonal myelination. Isolates of OPCs derived from adult human white matter also myelinated shiverer mouse brain, but much more rapidly than their fetal counterparts, achieving widespread and dense myelin basic protein (MBP) expression by 4 weeks after grafting. Adult OPCs generated oligodendrocytes more efficiently than fetal OPCs, and ensheathed more host axons per donor cell than fetal cells. Both fetal and adult OPC phenotypes mediated the extensive and robust myelination of congenitally dysmyelinated host brain, although their differences suggested their use for different disease targets.  相似文献   

12.
Oligodendrocytes, the myelin-forming cells of the central nervous system, were cultured from newborn rat brain and optic nerve to allow us to analyze whether two transmembranous myelin proteins, myelin-associated glycoprotein (MAG) and proteolipid protein (PLP), were expressed together with myelin basic protein (MBP) in defined medium with low serum and in the absence of neurons. Using double label immunofluorescence, we investigated when and where these three myelin proteins appeared in cells expressing galactocerebroside (GC), a specific marker for the oligodendrocyte membrane. We found that a proportion of oligodendrocytes derived from brain and optic nerve invariably express MBP, MAG, and PLP about a week after the emergence of GC, which occurs around birth. In brain-derived oligodendrocytes, MBP and MAG first emerge between the fifth and the seventh day after birth, followed by PLP 1 to 2 d later. All three proteins were confined to the cell body at that time, although an extensive network of GC positive processes had already developed. Each protein shows a specific cytoplasmic localization: diffuse for MBP, mostly perinuclear for MAG, and particulate for PLP. Interestingly, MAG, which may be involved in glial-axon interactions, is the first myelin protein detected in the processes at approximately 10 d after birth. MBP and PLP are only seen in these locations after 15 d. All GC-positive cells express the three myelin proteins by day 19. Simultaneously, numerous membrane and myelin whorls accumulate along the oligodendrocyte surface. The sequential emergence, cytoplasmic location, and peak of expression of these three myelin proteins in vitro follow a pattern similar to that described in vivo and, therefore, are independent of continuous neuronal influences. Such cultures provide a convenient system to study factors regulating expression of myelin proteins.  相似文献   

13.
Abstract— The concentration of protein as assayed by the Lowry method and the specific activity of 2′.3’-cyclic nucleosidemonophosphate phosphodiesterase (CNP), an enzyme characteristic of the myelin sheath, were determined in human CNS tissues obtained at autopsy from subjects ranging in age from 26 weeks gestation to 83 y. CNP activity in cerebral white matter samples was very low until approx 2 months of age when it increased rapidly, reaching near-adult levels by 2 y of age. CNP activity in adult (15–60 y) cerebral white matter was 8.1 ± 1.0 μmol/min/mg protein (mean ±s.d. ). The protein concentration of cerebral white matter increased from 64 mg/g wet tissue at 26 weeks gestation to adult levels (118.5 ± 10.0 mg/g wet tissue) by 16–18 months. CNP activity in cerebral gray matter was initially very low and showed only a small increase during development to adult values of approx 1.4 μmol/min/mg protein. In spinal cord, adult values (3.7 ± 0.56 μmol/min/mg protein) were found shortly after birth. The increase in CNP activity to near-adult values occurred earlier in cross-sections of cervical spinal cord than in cerebral white matter. The increase in spinal cord protein concentration showed a similar trend (adult values = 103.1 ± 9.5 mg/g wet tissue). The white matter protein concentration decreased significantly with age over the 15–83 y interval examined but the CNP specific activity in white matter did not. The protein concentration of the 61–83 y group was 8% lower than that of the 15–60 y group. The spinal cord protein concentration decreased significantly and the spinal cord CNP specific acitivity increased significantly with increasing time between death and sample freezing. The sex of the individual had no significant effect on any of the variables examined. The developmental curves obtained for these tissues are consistent with the hypothesis that CNP is an intrinsic myelin component in human CNS myelin. The marked increase in CNP activity in white matter coincides with the period of rapid myelin deposition as determined by other parameters. CNP activity may be useful as an index of myelination in human CNS tissues.  相似文献   

14.
15.
16.
The membrane lipids were examined in the cerebellum from five patients who died with Rett syndrome (RS). The major lipids of cerebellar folia and white matter did not show any difference compared with age-matched controls. There were slightly low values for cerebrosides, a biochemical marker for myelin, in cerebellar folia but high values in white matter of corpus medullare. The ganglioside concentration was reduced in one case which had shown marked astrocytosis at histological examination. Astrocyte associated gangliosides were significantly increased in this case, but their proportion was also increased in the four other patients. Lacto series acidic glycosphingolipids, 3′-LM1 and LK1, closely associated with Purkinje cells were reduced in the Rett cases which fits well with neuropathological examination demonstrating the loss of Purkinje cells. The most prominent finding was a decreased proportion of gangliosides GD1a and GT1b in cerebellar folia and white matter. The decreased proportion of GD1a might reflect an abnormality of synaptogenesis in RS and would be compatible with the clinical profile of this disease.  相似文献   

17.
Primary cultures of neonatal mouse cerebra were maintained for up to 4 weeks in the absence of neurons. Oligodendrocytes in these cultures pass through a sequence of cytoarchitectural change and antigen expression which mimics the differentiation of oligodendrocytes in vivo. The cell bodies and processes of oligodendrocytes first express the myelin-specific antigen galactocerebroside (GC) by 2 days in vitro. Myelin basic protein (MBP) appears several days later. The majority of oligodendrocytes then proceed to elaborate large sheets of membranous material from the tips and lengths of cell processes. These membranous sheets, which contain GC and MBP, are reminiscent of unwrapped myelin profiles in vivo. As with the cell bodies and processes, GC is inserted into the sheets several days before MBP. Our results establish that oligodendrocytes cultured without neurons are able to produce extensive membranes containing myelin-specific antigens. They also suggest that oligodendrocyte shape and membrane production are, in part, regulated from within the oligodendrocyte itself.  相似文献   

18.
The processing and presentation of whole myelin basic protein (MBP) and a 12 amino acid encephalitogenic peptide were investigated using MBP-immune and peptide-immune murine T cell lines. Myelin basic protein is the major component of central nervous system (CNS) white matter capable of inciting an autoimmune response which leads to the disease, experimental allergic encephalomyelitis (EAE), in a number of animal species. MBP-immune T cell lines caused a form of adoptively transferred EAE when injected into naive, syngeneic recipients. It has been found that both whole MBP and peptide required processing in order to induce proliferation of the T cell lines. The proliferative response was greatest when MBP was processed under conditions in which proteolysis was prevented. The demonstration that activation of encephalitogenic MBP immune T cells requires a processed form of MBP may have relevance to the human inflammatory CNS demyelinating condition, multiple sclerosis, for which EAE is the EAE is the prime animal model.  相似文献   

19.
20.
We describe the immunohistochemical localization of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) in CNS of the jimpy mutant mouse which is characterized by dys- and demyelination. In controls, the CNPase and MBP were localized exclusively in white matter in the CNS. The jimpy mutant mice were severely affected: A very weak reaction was observed in the white matter. Very few CNPase- and MBP-positive myelin sheaths were observed, and some degradation products were also observed after reaction with antisera against both CNPase and MBP. The immunohistochemical reaction in the jimpy mice showed a similar localization in both CNPase and MBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号