首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of repeated injections of progesterone to pregnant rats upon monoamine storage and regulation of enzymes phenylethanolamine-N-methyltransferase (PNMT), monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) was studied. All the pregnant females received progesterone (4 mg/100 g body weight) on 19, 20 and 21 days post-coitum but one group was killed at 21 days of pregnancy and the other one at 0 h parturition. Adrenal epinephrine demonstrated highly significant increase in progesterone treated rats. At the same time norepinephrine content declined significantly from the control value. The activity of enzyme PNMT also showed marked increase in the adrenals of progesterone treated females. Activity of enzyme MAO showed a slight decline after progesterone treatment to pregnant rats. Enzyme COMT in progesterone treateed animals showed decline at 0 h parturition but at 21 days post-coitum it was significantly higher from non-injected females. All the increases and decreases in monoamines and the three enzymes were significant when the results were expressed per adrenal gland or per gram of adrenal. The results suggest that exogenous progesterone administration during late pregnancy increases epinephrine stores by declining monoamine metabolism by MAO and COMT and increasing their synthesis by PNMT which is responsible for N-methylation of norepinephrine to epinephrine.  相似文献   

2.
Summary Steroids (testosterone, oestrogen, progesterone, corticosterone, dexamethasone and deoxycorticosterone) were administered intramuscularly (0.1 mg · 100 g bw-1) on seven consecutive days to juvenile male soft-shelled turtles. Serotonin, norepinephrine and epinephrine contents of the pineal-paraphyseal complex were measured spectrofluorometrically 24 h after the last injection. Testosterone and oestrogen decreased serotonin, norepinephrine and epinephrine levels. Progesterone treatment resulted in an increase of serotonin level and a fall in norepinephrine and epinephrine levels. Corticosterone treatment caused an increase of serotonin level and a decrease of norepinephrine and epinephrine levels. Dexamethasone failed to alter serotonin content, increased norepinephrine and decreased epinephrine levels. Deoxycorticosterone decreased serotonin and elevated epinephrine content.Abbreviations 5-HIAA 5-hydroxyindole-acetic acid - 5-MTOH 5-methoxytryptophol - ANOVA analysis of variance; bw body weight - COMT catecholamine-o-methyl transferase - E epinephrine - HIOMT hydroxyindole-o-methyl transferase - MAO monoamine oxidase - MS mean sum of squares - NAT N-acetyltransferase - NE norepinephrine - SR synaptic ribbon - SS sum of squares - SV source of variation  相似文献   

3.
Fetal and early neonatal development of adrenal catecholaminergic enzymes was studied in rats maintained under normal (normoxic) and high-altitude, 3800 m, 13% PO2 (hypoxic) conditions. In adrenals of normoxic fetuses, tyrosinehydroxylase (TH), DOPA-decarboxylase (DDC), phenylethanolamine-N-methyltransferase (PNMT), catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) showed rapid increases in activity from day 19 to day 21 of gestation. The activities of all enzymes but TH were higher at day 1 postpartum compared to fetal values: TH was equiactive just before and after birth. In animals conceived, born and raised at high altitude, several changes indicative of impaired adrenal development occurred. The activities of the synthesizing enzymes, TH, DDC and PNMT, were variably affected at some time during the perinatal period. The activities of the catabolizing enzymes, MAO and COMT, at high altitude were increased on the last days of gestation but depressed after birth, compared to control levels. Catecholamine content in high-altitude adrenals was altered on day 19 of gestation when epinephrine was lower, and again on day 1 postpartum when both norepinephrine and epinephrine were higher than in control adrenals at sea level. Normal developmental changes and high-altitude-induced disturbances in adrenal catecholaminergic enzymes are discussed with reference to differences observed in adrenal cortical function between sea-level and high-altitude animals.  相似文献   

4.
Some reports in the literature allow to suspect the existence of an effect of sexual steroids on the adrenal catecholamines. To test this possibility, we have examined the catecholaminergic activity in the adrenal medulla of normal cycling rats in three phases of estrous cycle and of ovariectomized (OVX) rats injected with pharmacological doses of estradiol (ES), 2-hydroxyestradiol (HE) and/or progesterone (P). Adrenomedullary content of norepinephrine (NE) was similar during the estrous cycle, while epinephrine (E) content was increased during diestrous. This increase was concomitant with an increased phenylethanolamine-N-methyltransferase (PNMT) activity. Moreover, the monoamine oxidase (MAO) activity was significantly increased during proestrous, while the catechol-O-methyltransferase (COMT) activity was significantly decreased during estrous. In addition to these observations, ovariectomy caused a significant reduction of the E/NE ratio and of COMT and MAO activities. Administration of ES to OVX rats increased the E content, the E/NE ratio and the COMT activity as compared to vehicle-treated OVX rats. Administration of P to OVX animals led also to a significant increase of the E/NE ratio and of the COMT activity but not of the E content, while the administration of this steroid to OVX rats previously treated with ES only increased the COMT activity. Finally, administration of HE caused non-significant changes in NE and E contents and in MAO, COMT and PNMT activities. We can conclude that sexual steroids seem to be able to modify the catecholamine metabolism in the adrenal medulla and, hence, they could alter the ability of this gland to store and release these amines.  相似文献   

5.
CP Hu  YQ Zou  JT Feng  XZ Li 《PloS one》2012,7(9):e44586

Background

Decreased epinephrine (EPI) is an important underlying factor of bronchoconstriction in asthma. Exogenous β2-adrenergic receptor agonist is one of the preferred options to treat asthma. We previously showed that this phenomenon involved adrenal medullary chromaffin cell (AMCC) transformation to a neuron phenotype. However, the underlying molecular mechanism is not fully understood. To further explore this, an asthmatic model with unilateral adrenalectomy was established in this study.

Methodology/Principal Findings

Thirty-two rats were randomly into four groups (n = 8 each) control rats (controls), unilateral adrenalectomy rats (surgery-control, s-control), asthmatic rats (asthma), unilateral adrenalectomy asthmatic rats (surgery-induced asthma, s-asthma). Asthmatic rats and s-asthmatic rats were sensitized and challenged with ovalbumin (OVA). The pathological changes in adrenal medulla tissues were observed under microscopy. EPI and its rate-limiting enzyme, phenylethanolamine N-methyl transferase (PNMT), were measured. Peripherin, a type III intermediate filament protein, was also detected in each group. The asthmatic rats presented with decreased chromaffin granules and swollen mitochondria in AMCCs, and the s-asthmatic rats presented more serious pathological changes than those in asthmatic rats and s-control rats. The expressions of EPI and PNMT in asthmatic rats were significantly decreased, as compared with levels in controls (P<0.05), and a further decline was observed in s-asthmatic rats (P<0.05). The expression of peripherin was higher in the asthmatic rats than in the controls, and the highest level was found in the s-asthmatic rats (P<0.05).

Conclusion/Significance

Compared with asthmatic rats and s-control rats, the transformation tendency of AMCCs to neurons is more obvious in the s-asthmatic rats. Moreover, this phenotype alteration in the asthmatic rats is accompanied by reduced EPI and PNMT, and increased peripherin expression. This result provides further evidence to support the notion that phenotype alteration of AMCCs contributes to asthma pathogenesis.  相似文献   

6.
Chronic administration of ouabain (3 mg/Kg body weight, subcutaneously, once daily for consecutive 15 days) definitely inhibited epinephrine-induced increase of adrenal corticosterone secretion. The inhibition rate increased along with frequency of ouabain administration. Increase in adrenal corticosterone synthesis and secretion by ACTH (20-50 mU/rat) administration was partially suppressed by pretreatment with chronic ouabain administration. A slight but significant increase of adrenal corticosterone secretion caused by epinephrine administration in hypophysectomized rats was also inhibited by pretreatment with ouabain administration. Chronic administration of neither phentolamine (1 mg/rat, intraperitoneally, once daily for consecutive 15 days) nor propranolol (3 mg/Kg body weight, subcutaneously, once daily for consecutive 15 days) caused significant changes in adrenal corticosterone secretion in response to ACTH as well as to epinephrine. Chronic administration of ouabain in rats causes not only elevated secretion of ACTH from anterior pituitary but also functional change in adrenals leading to suppression of corticosterone secretion in response to ACTH or epinephrine administration.  相似文献   

7.
Lithium chloride at a dose of 200 micrograms/100 g body weight/day given for 21 days caused a significant increase in adrenal weight, adrenal 5-ene-3 beta-hydroxysteroid dehydrogenase (5-ene-3 beta-HSD) activity along with elevation in serum level of corticosterone on the 22nd day in the rat. Administration of testosterone for the last 14 days to lithium treated rats caused a significant decrease in adrenal weight, adrenal 5-ene-3 beta-HSD activity and serum level of corticosterone in comparison to lithium treated animals.  相似文献   

8.
A simple and highly sensitive method for simultaneous assay of phenylethanolamine N-methyltransferase (PNMT) and catechol O-methyltransferase (COMT) is described. These enzymes are determined in a single tissue homogenate using S-[methyl-3H] adenosyl-L-methionine as methyl donor and sequentially incubating with the substrates phenylethanolamine and epinephrine. The radioactive products of the enzymatic reactions, N-methylphenylethanolamine and metanephrine, are extracted and then separated by thin-layer chromatography. The identity of the reaction products has been established chromatographically and the conditions for both enzymatic reactions in the assay procedure have been defined. Measurement of PNMT activity in the rat pineal gland or in minute fragments of other tissues (e.g., brain nuclei) has not been possible using previously described methods. Activities of PNMT and COMT in the rat pineal gland, various hypothalamic nuclei, and the auricular and ventricular myocardia are herein reported.  相似文献   

9.
Since thyroid hormones influence urinary excretion of catecholamines after exposure to cold, the effects of hyper- and hypo-thyroidism on adrenal tyrosine hydroxylase (TH) (EC 1.14.16.2), phenylethanolamine-N-methyl transferase (PNMT) (EC 2.1.1.28), and serum dopamine-beta-hydroxylase (DbetaH) (EC 1.14.17.1) of rats of 23 and 4 degrees C were studied. TH changes resembled the urinary excretion pattern at 4 degrees C in being higher after 8 days than after 1 day of exposure, and in declining as acclimation occurred. At 23 degrees C, TH activity of hypothyroid rats was significantly higher than in euthyroid or hyperthyroid animals, and after 1 day at 4 degrees C the value increased even more. While in the hypothyroid animals at 4 degrees C the concentration of adrenal catecholamines was less, the epinephrine to norepinephrine ratio was higher than at 23 degrees C. Very high TH activity with a decline in catecholamine concentration suggests that the capacity of TH had been exceeded. PNMT activity was significantly elevated in this group. TH activity was not decreased in the hyperthyroid group at 23 degrees C, and was increased after 8 days at 4 degrees C, suggesting that circulating thyroid hormones have no direct inhibitory effect on TH. Serum DbetaH was elevated after exposure to 4 degrees C, regardless of thyroid hormonal status. The activation of adrenal TH in hypothyroid rats at 23 degrees C and of TH, PNMT, and serum DbetaH at 4 degrees C is probably the result of increased activity of the sympathetic nervous system.  相似文献   

10.
The mechanism involved in the inhibitory actions of chronic corticosterone treatment on Leydig cell steroidogenesis was studied in adult Wistar rats. Rats were treated with corticosterone-21-acetate (2 mg/100 g body weight, i.m., twice daily) for 15 days and another set of rats was treated with corticosterone plus ovine luteinizing hormone (oLH) (100 microg/kg body weight, s.c., daily) for 15 days. Chronic treatment with corticosterone increased serum corticosterone but decreased serum LH, testosterone, estradiol and testicular interstitial fluid (TIF) testosterone and estradiol concentrations. Administration of LH with corticosterone partially prevented the decrease in serum and TIF testosterone and estradiol. Leydig cell LH receptor number, basal and LH-stimulated cAMP production were diminished by corticosterone treatment which remained at control level in the corticosterone plus LH treated rats. Activities of steroidogenic enzymes, 3beta- and 17beta-hydroxysteroid dehydrogenase (3beta-HSD and 17beta-HSD) were significantly decreased in corticosterone treated rats. LH plus corticosterone treatment did not affect 3beta-HSD activity but decreased 17beta-HSD activity, indicating a direct inhibitory effect of excess corticosterone on Leydig cell testosterone synthesis. The indirect effect of corticosterone, thus, assume to be mediated through lower LH which regulates the activity of 3beta-HSD. Basal, LH and cAMP-stimulated testosterone production by Leydig cells of corticosterone and corticosterone plus LH treated rats were decreased compared to control suggesting the deleterious effect of excess corticosterone on LH signal transduction and thus steroidogenesis.  相似文献   

11.
Y Kabayama  Y Kato  K Tojo  A Shimatsu  H Ohta  H Imura 《Life sciences》1985,36(13):1287-1294
Intracerebroventricular (icv) injection of DN1417 (0.3, 3 and 30 nmol/rat), a TRH analog, resulted in a dose-related increase in plasma glucose, epinephrine and norepinephrine levels in conscious male rats. The effects of DN1417 were more potent and longer-lasting than those of TRH on a molar basis. Intravenous injection of DN1417 (30 nmol/rat) did not change plasma glucose, epinephrine and norepinephrine levels. Pretreatment with hexamethonium (1.5 mg/100 g body wt, iv, 2 min before) inhibited plasma glucose, epinephrine and norepinephrine responses to DN1417 (3 nmol/rat, icv). DN1417 did not change plasma glucose, epinephrine and norepinephrine levels in rats after total adrenalectomy. In the animals pretreated with cysteamine (30 mg/100 g body wt, sc, 4 h before), basal plasma glucose, epinephrine and norepinephrine levels were raised, and exaggerated responses of plasma glucose, epinephrine and norepinephrine to DN1417 (3 nmol/rat, icv) were obtained. These results indicate that DN1417 has a potent and long-lasting effect in the central nervous system in stimulating the secretion of catecholamines through the autonomic nervous system, which is associated with an elevation of plasma glucose and that endogenous hypothalamic somatostatin may inhibit the action of DN1417.  相似文献   

12.
Cadmium (Cd) is one of the environmental pollutants that affect various tissues and organs including testis. Harmful effect of cadmium on testis is known to be germ cell degeneration and impairment of testicular steroidogenesis. In the present study, the effect of diallyl sulfide (DAS), a sulfur-containing volatile compound present in garlic, and zinc (Zn) was investigated on cadmium-induced testicular toxicity in rats. Male adult Wistar rats treated with cadmium (2.5 mg/kg body wt, five times a week for 4 weeks) showed decreased body weight, paired testicular weight, relative testicular weight, serum testosterone, luteinizing hormone, follicle-stimulating hormone, and testicular total antioxidant capacity (TAC) and protein levels. Testicular steroidogenic enzymes, such as 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and marker enzymes, such as sorbitol dehydrogenase (SDH), lactate dehydrogenase (LDH), acid phosphatase (ACP), alkaline phosphatase (ALP), and glucose-6-phosphate dehydrogenase (G6PD), showed a significant decrease in activities whereas that of gamma-glutamyl transferase was significantly increased after cadmium exposure. The results have revealed that concurrent treatment with DAS or zinc restored key steroidogenic enzymes, SDH, LDH, and G6PD and increased testicular weight significantly. DAS restored the TAC level and increased testosterone level and relative testicular weight significantly. Zinc restored testicular protein level and body weight. It can be concluded that cadmium causes testicular toxicity and inhibits androgen production in adult male rats probably by affecting pituitary gonadotrophins and that concurrent administration of DAS or zinc provides protection against cadmium-induced testicular toxicity.  相似文献   

13.
Abstract— Injections of dexamethasone (0.1 mg/kg/day, s.c.) on the first 2–3 days of life increased the phenylethanolamine- N -methyltransferase (PNMT) activity and epinephrine content of the superior cervical ganglion (SCG) and stellate ganglion of neonatal rats; the dopamine content was unaltered while norepinephrine was slightly reduced in these ganglia. Dexamethasone did not alter the PNMT activity or epinephrine content of the salivary glands or heart. The PNMT activity and epinephrine content of the SCG remained elevated for 10–14 days. Pretreatment with 6-hydroxydopamine did not alter the dexamethasone effects.
Injections of adrenocorticotrophic hormone (ACTH) (25 munits/rat twice a day) or exposure to a cold stress (4°C, 3 times a day) on the first 2–3 days of life, elevated the plasma concentration of corticosterone, and also increased the PNMT activity and epinephrine content in SCG of neonatal rats. Injecting pregnant rats with dexamethasone or ACTH, or exposing them to cold or restraint stress on the last 3 days of gestation increased the PNMT activity and epinephrine content in the SCG of their pups. These results indicate that the actions of dexamethasone on neonatal sympathetic ganglia may be mimicked by increasing the plasma concentration of endogenous adrenocortical steroids.  相似文献   

14.
The effects of phenylethanolamine N-methyltransferase (PNMT) and dopamine-β-hydroxylase (DβH) inhibition on the epinephrine content in specific regions of the brain were studied. SKF 64139, a potent PNMT inhibitor, is effective in lowering brain epinephrine levels. The time course of PNMT inhibition by SKF 64139 parallels the lowering of epinephrine levels in the brain. Diethyldithiocarbamate (DDC), a potent inhibitor of DβH, is effective in lowering norepinephrine and epinephrine levels and in elevating dopamine levels in the analyzed regions of the brain. The epinephrine levels in the brain appear to be under similar biosynthetic control as in the adrenal glands.  相似文献   

15.
The aim of the current investigation was to ascertain the role of ACTH and adrenal hormones on adrenomedullary and glycemic functions in soft-shelled turtles, Lissemys punctata punctata. All the experiments were carried out on sexually immature animals. Findings revealed that: (1) ACTH administration (0.5 IU/1.0 IU/2.0 IU per 100 g body wt. daily for 10 days) in all doses stimulated adrenomedullary function by increasing medullary cell nuclear diameter with elevations of norepinephrine, epinephrine and blood sugar levels. Only moderate and higher doses (50 microg/100 microg per 100 g body wt. daily for 10 days) of dexamethasone suppressed adrenomedullary activity and blood sugar level by reversing the changes to those of ACTH; the responses were dose-dependent. But these changes were no longer observed after ACTH treatment in dexamethasone (DMS) recipients (DMS: 100 microg/ 100 g body wt daily for the first 10 days and ACTH: 0.5 IU / 100 g body wt daily for the next 10 days); (2) Only moderate and higher doses (50 microg/100 microg per 100 g body wt daily for 10 days) of corticosterone increased adrenomedullary activity and blood sugar level and the responses were also dose-dependent. But aldosterone treatment in all doses (same as for corticosterone) had no significant effect on the adrenal medulla or blood sugar level; (3) Only moderate and higher doses of norepinephrine or epinephrine (same as for corticosterone) caused adrenomedullary atrophy with depletions of norepinephrine and epinephrine levels but elevated the glycemic level. The findings are briefly discussed.  相似文献   

16.
Adult male pigeons, some intact and some castrated in adulthood, were housed in individual cages kept in an isolated room with temperature and lighting controlled. Weekly measurements were made of ad lib. food intake and body weight for 4 mo after surgery. Castration was followed by a significant depression in body weight and by initially depressed but then progressively enhanced feeding. Food deprivation elicited an increase in food intake proportional to body weight loss, but castrates consumed less food at 100%, 90%, and 80% of ad lib. feeding weight than either intact birds or castrates treated daily with testosterone propionate (TP). Castrates gained weight and ate more than controls in response to daily treatments (im) with TP (6 mg/400 g) or 5a-dihydrotestosterone (DHT, 6 mg/400 g), while androstenedione (15 mg/400 g) and androsterone (15 mg/400 g) were ineffective. Administration of 100 mg DHT (sc) to castrates produced a significant enhancement of body weight without elevating the level of food intake. The biological potency of these diverse androgens on male courtship behavior was reciprocal to that for weight-promoting potency. The results suggest that the structural requirements of the androgen molecule for promoting body weight differ from those for stimulating sexual behavior.  相似文献   

17.
Adult male rats received daily injections (sc) of gonadotropin releasing hormone antagonist (0.2 mg/kg(-1) x day(-1)) for 21 days when they were sacrificed on day 22, adrenal weight, adrenal A5-3beta (delta 5-3beta) hydroxysteroid dehydrogenase (Delta5-3beta-HSD) activity and serum level of corticosterone were increased significantly while testicular 17beta (17beta) hydroxysteroid dehydrogenase (17beta-HSD) activity and serum level of testosterone and spermatogenesis were decreased in the rats fed on 5% casein diet. GnRH antagonist treated rats fed on 20% casein diet, resulted significant decrease in adrenal weight, serum corticosterone and adrenal A5-3beta-HSD activity while testicular 17beta-HSD activity serum testosterone levels and the weights of sex organs were increased with respect to anti GnRH treated rats fed on 5% casein diet. But the GnRH antagonist treated rats fed on 20% casein diet showed decreased spermatogenesis quantitatively and sperm count appeared similar to anti GnRH treated rats fed on 5% casein diet. These results indicate that high casein diet protects adrenocortical activity and stimulates testosterone synthesis without effecting spermatogenic arrest in GnRH antagonist treated rats. It may be concluded that GnRH antagonist in presence of high milk protein diet may be considered to be a suitable antihormone in the development of an ideal male contraceptive.  相似文献   

18.
In this study, we investigated the sex hormone regulation of 5'-iodothyronine deiodinase activity, which is responsible for enzymatic conversion of thyroxine into the bioactive form, triiodothyronine. Pituitary homogenates and liver microsomes from: 1) ovariectomized rats injected with 17-beta-estradiol benzoate and/or progesterone (0.7 and 250 microg/100 g body weight, respectively, subcutaneously, over 10 days); 2) male castrated rats treated or not with 0.4 mg/100 g body weight testosterone propionate, intramuscular, over 7 days, were assayed for type 1 and type 2 deiodinase activity in the pituitary. Enzyme activities were measured by release of (125)I from deiodination of (125)I reverse triiodothyronine under varying assay conditions. Estrogen stimulated anterior pituitary and liver type 1 deiodinase activity in ovariectomized rats (45 and 30 %, p < 0.05). Progesterone inhibited the liver enzyme (40 %, p < 0.05), and had no effect on the pituitary, but in both tissues, blocked estrogen stimulatory effect on type 1 deiodinase. In males, testosterone normalized the reduced liver type 1 deiodinase of castrated rats. However, in the pituitary, castration increased (50 %) type 1 deiodinase independent of testosterone treatment, suggesting the existence of a inhibitory testicular regulator of pituitary type 1 enzyme. Treatments did not alter pituitary type 2 deiodinase activity. In conclusion, gonads and sex steroids differentially modulate type 1 deiodinase activity in rat pituitary and liver.  相似文献   

19.
The effects of excess corticosterone on luteinizing hormone (LH)-stimulated Leydig cell testosterone production and activity of 11beta-HSD was studied. Adult male rats (200-250 g body weight) were treated with corticosterone-21-acetate (2 mg/100 g body weight, i.m., twice daily) for 15 days. Another set of rats was treated with corticosterone (dose as above) plus LH (ovine LH 100 microg/kg body weight, s.c., daily) for 15 days. Corticosterone administration significantly increased serum and testicular interstitial fluid (TIF) corticosterone but decreased testosterone levels. Administration of LH with corticosterone partially prevented the decrease in serum and TIF testosterone. The oxidative activity of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) was significantly decreased in Leydig cells of rats treated with corticosterone alone and in combination with LH. The direct effect of corticosterone on Leydig cell steroidogenic potency was also studied in vitro. Addition of corticosterone to Leydig cell culture showed a dose dependent effect on LH-stimulated testosterone production. Corticosterone at 50 and 100 ng/ml did not alter LH-stimulated testosterone production, but at high doses (200-400 ng/ml), decreased basal and LH-stimulated testosterone production. Basal and LH-stimulated cAMP production was not altered by corticosterone in vitro. It is concluded from the present study that elevated levels of corticosterone decreased the oxidative activity of 11beta-HSD and thus resulting in impaired Leydig cell steroidogenesis and the inhibitory effects of corticosterone on testosterone production appear to be mediated through inhibition of LH signal transduction at post-cAMP level.  相似文献   

20.
Fluctuations of catecholamine contents in the cockroach brain-subesophageal ganglion (Br-SG) complex were examined by HPLC with electrochemical detector. The chromatographic system detected dopamine (DA), norepinephrine (NE), epinephrine (EP) and some putative metabolites as standard compounds. Da, NE and EP were detected in the Br-SG complex whereas those metabolites such as 2,5-dihydroxyphenylacetic acid (DOPAC) and 3-methoxy 4-hydroxy phenylglycol (MOPEG) were not detected from the tissue samples in a significant amount. The distribution of DA in the central nervous system was strongly biased toward cephalic ganglia, whereas EP was distributed more evenly over all ganglia. EP existed in both free and conjugated forms, the latter being predominant. Fluctuation patterns of these catecholamines were distinct; DA level kept constant throughout the day, at ca 200 ng/mg protein, NE showed a peak around AZT (artificial Zeitgeber time) 12, i.e., the light-off moment and the rhythm free-ran in constant darkness (DD), and both the free and the conjugated, i.e., acetylsulfate, forms of EP had peaks around mid-dark (AZT 18), in antiphase to the NE peak, and had a trough around AZT 12. Since both forms of EP showed the same fluctuation pattern, EP content in free form was regulated mainly by phenylethanolamine N -methyltransferase (PNMT) but not by hydrolysis of the conjugated EP. Since the enzymatic activities of monoamine oxidase (MAO), catechol O -methyltransferase (COMT) and aldehyde reductase (AR) were low, the fluctuation of these amines must be regulated by N -acetyltransferase (NAT), dopamine ß-hydroxylase (DBH) and PNMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号