首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Ethanol-induced gut barrier disruption is associated with several gastrointestinal and liver disorders.

Aim

Since human data on effects of moderate ethanol consumption on intestinal barrier integrity and involved mechanisms are limited, the objectives of this study were to investigate effects of a single moderate ethanol dose on small and large intestinal permeability and to explore the role of mitogen activated protein kinase (MAPK) pathway as a primary signaling mechanism.

Methods

Intestinal permeability was assessed in 12 healthy volunteers after intraduodenal administration of either placebo or 20 g ethanol in a randomised cross-over trial. Localization of the tight junction (TJ) and gene expression, phosphorylation of the MAPK isoforms p38, ERK and JNK as indicative of activation were analyzed in duodenal biopsies. The role of MAPK was further examined in vitro using Caco-2 monolayers.

Results

Ethanol increased small and large intestinal permeability, paralleled by redistribution of ZO-1 and occludin, down-regulation of ZO-1 and up-regulation of myosin light chain kinase (MLCK) mRNA expression, and increased MAPK isoforms phosphorylation. In Caco-2 monolayers, ethanol increased permeability, induced redistribution of the junctional proteins and F-actin, and MAPK and MLCK activation, as indicated by phosphorylation of MAPK isoforms and myosin light chain (MLC), respectively, which could be reversed by pretreatment with either MAPK inhibitors or the anti-oxidant L-cysteine.

Conclusions

Administration of moderate ethanol dosage can increase both small and colon permeability. Furthermore, the data indicate a pivotal role for MAPK and its crosstalk with MLCK in ethanol-induced intestinal barrier disruption.

Trial Registration

ClinicalTrials.gov NCT00928733  相似文献   

2.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies of decreased perfusion, and high-altitude exposure. The effects of hypoxia and posthypoxic reoxygenation in cerebral microvasculature and corresponding cellular mechanisms involved in disrupting the BBB remain unclear. This study examined hypoxia and posthypoxic reoxygenation effects on paracellular permeability and changes in actin and TJ proteins using primary bovine brain microvessel endothelial cells (BBMEC). Hypoxia induced a 2.6-fold increase in [(14)C]sucrose, a marker of paracellular permeability. This effect was significantly reduced (~58%) with posthypoxic reoxygenation. After hypoxia and posthypoxic reoxygenation, actin expression was increased (1.4- and 2.3-fold, respectively). Whereas little change was observed in TJ protein expression immediately after hypoxia, a twofold increase in expression was seen with posthypoxic reoxygenation. Furthermore, immunofluorescence studies showed alterations in occludin, ZO-1, and ZO-2 protein localization during hypoxia and posthypoxic reoxygenation that correlate with the observed changes in BBMEC permeability. The results of this study show hypoxia-induced changes in paracellular permeability may be due to perturbation of TJ complexes and that posthypoxic reoxygenation reverses these effects.  相似文献   

3.
In a study of Necturus gallbladder epithelium Benzel et al. (Benzel et al., 1980) found that low (0.2–1.2 M) and higher concentrations (1.5 M and more) of cytochalasin B (CB) caused an increase and decrease in the transepithelial electrical resistance (TER), respectively. Moreover, there were slight changes in the height and complexicity of tight junction (TJ) strands, as visualized by freeze-fracture and freeze-etching. To elucidate the mechanisms of these findings, we first demonstrated that the effect is also present in monolayers of Madin-Darby Canine Kidney strain I (MDCK-I) cells. Thus, a low concentration (0.1 ng/ml) cytochalasin B (CB) strengthened the permeability barrier, as evidenced quantitatively by increases in TER on transepithelial electrical measurements. Furthermore, indirect immunofluorescence and confocal microscopy demonstrated that this effect was paralleled with an accumulation of F-actin and the tight junction marker protein, ZO-1, at the level of TJ. Equimolar concentrations of dihydrocytochalasin B (dhCB), on the other hand, did not lead to a tightening of the epithelium. Confirming previous studies, there was a general decrease in epithelial resistance after treatment with high concentrations (1 g/ml) of CB and dhCB, which was accompanied by distinct changes in the F-actin network and distribution of ZO-1. We speculate that the divergent effects of CB and dhCB on the F-actin and ZO-1 organization might be due to specific effects on the transport of monosaccharides across the plasma membrane, or that CB and dhCB in distinct ways involve the turnover of phosphatidylinositols in the membrane, thereby modulating junctional permeability and F-actin structure.  相似文献   

4.
The role of mitogen-activated protein kinases (MAPK) in the mechanism of EGF-mediated prevention of acetaldehyde-induced tight junction disruption was evaluated in Caco-2 cell monolayers. Pretreatment of cell monolayers with EGF attenuated acetaldehyde-induced decrease in resistance and increase in inulin permeability and redistribution of occludin, zona occludens-1 (ZO-1), E-cadherin, and β-catenin from the intercellular junctions. EGF rapidly increased the levels of phospho-ERK1/2, phospho-p38 MAPK, and phospho-JNK1. Pretreatment of cell monolayers with U-0126 (inhibitor of ERK activation), but not SB-202190 and SP-600125 (p38 MAPK and JNK inhibitors), significantly attenuated EGF-mediated prevention of acetaldehyde-induced changes in resistance, inulin permeability, and redistribution of occludin and ZO-1. U-0126, but not SB-202190 and SP-600125, also attenuated EGF-mediated prevention of acetaldehyde effect on the midregion F-actin ring. However, EGF-mediated preservation of junctional distribution of E-cadherin and β-catenin was unaffected by all three inhibitors. Expression of wild-type or constitutively active MEK1 attenuated acetaldehyde-induced redistribution of occludin and ZO-1, whereas dominant-negative MEK1 prevented EGF-mediated preservation of occludin and ZO-1 in acetaldehyde-treated cells. MEK1 expression did not alter E-cadherin distribution in acetaldehyde-treated cells in the presence or absence of EGF. Furthermore, EGF attenuated acetaldehyde-induced tyrosine-phosphorylation of occludin, ZO-1, claudin-3, and E-cadherin. U-0126, but not SB-202190 and SP-600125, prevented EGF effect on tyrosine-phosphorylation of occludin and ZO-1, but not claudin-3, E-cadherin, or β-catenin. These results indicate that EGF-mediated protection of tight junctions from acetaldehyde requires the activity of ERK1/2, but not p38 MAPK or JNK1/2, and that EGF-mediated protection of adherens junctions is independent of MAPK activities.  相似文献   

5.
Crohn's disease (CD) patients have an abnormal increase in intestinal epithelial permeability. The defect in intestinal tight junction (TJ) barrier has been proposed as an important etiologic factor of CD. TNF-alpha increases intestinal TJ permeability. Because TNF-alpha levels are markedly increased in CD, TNF-alpha increase in intestinal TJ permeability could be a contributing factor of intestinal permeability defect in CD. Our purpose was to determine some of the intracellular mechanisms involved in TNF-alpha modulation of intestinal epithelial TJ permeability by using an in vitro intestinal epithelial system consisting of filter-grown Caco-2 monolayers. TNF-alpha produced a concentration- and time-dependent increase in Caco-2 TJ permeability. TNF-alpha-induced increase in Caco-2 TJ permeability correlated with Caco-2 NF-kappa B activation. Inhibition of TNF-alpha-induced NF-kappa B activation by selected NF-kappa B inhibitors, curcumin and triptolide, prevented the increase in Caco-2 TJ permeability, indicating that NF-kappa B activation was required for the TNF-alpha-induced increase in Caco-2 TJ permeability. This increase in Caco-2 TJ permeability was accompanied by down-regulation of zonula occludens (ZO)-1 proteins and alteration in junctional localization of ZO-1 proteins. TNF-alpha modulation of ZO-1 protein expression and junctional localization were also prevented by NF-kappa B inhibitors. TNF-alpha did not induce apoptosis in Caco-2 cells, suggesting that apoptosis was not the mechanism involved in TNF-alpha-induced increase in Caco-2 TJ permeability. These results demonstrate for the first time that TNF-alpha-induced increase in Caco-2 TJ permeability was mediated by NF-kappa B activation. The increase in permeability was associated with NF-kappa B-dependent downregulation of ZO-1 protein expression and alteration in junctional localization.  相似文献   

6.
The intracellular mechanisms that mediate cytochalasin-induced increase in intestinal epithelial tight junction (TJ) permeability are unclear. In this study, we examined the involvement of myosin light chain kinase (MLCK) in this process, using the filter-grown Caco-2 intestinal epithelial monolayers. Cytochalasin B (Cyto B) (5 microg/ml) produced an increase in Caco-2 MLCK activity, which correlated with the increase in Caco-2 TJ permeability. The inhibition of Cyto B-induced MLCK activation prevented the increase in Caco-2 TJ permeability. Additionally, myosin-Mg(2+)-ATPase inhibitor and metabolic inhibitors (which inhibit MLCK induced actin-myosin contraction) also prevented the Cyto B-induced increase in Caco-2 TJ permeability. Cyto B caused a late-phase (15-30 min) aggregation of actin fragments into large actin clumps, which was also inhibited by MLCK inhibitors. Cyto B produced a morphological disturbance of the ZO-1 TJ proteins, visually correlating with the functional increase in Caco-2 TJ permeability. The MLCK and myosin-Mg(2+)-ATPase inhibitors prevented both the functional increase in TJ permeability and disruption of ZO-1 proteins. These findings suggested that Cyto B-induced increase in Caco-2 TJ permeability is regulated by MLCK activation.  相似文献   

7.
Tight junctions (TJs) play a crucial role in the establishment of cell polarity and regulation of paracellular permeability in epithelia. Here, we show that upon calcium-induced junction biogenesis in Madin-Darby canine kidney cells, ABalphaC, a major protein phosphatase (PP)2A holoenzyme, is recruited to the apical membrane where it interacts with the TJ complex. Enhanced PP2A activity induces dephosphorylation of the TJ proteins, ZO-1, occludin, and claudin-1, and is associated with increased paracellular permeability. Expression of PP2A catalytic subunit severely prevents TJ assembly. Conversely, inhibition of PP2A by okadaic acid promotes the phosphorylation and recruitment of ZO-1, occludin, and claudin-1 to the TJ during junctional biogenesis. PP2A negatively regulates TJ assembly without appreciably affecting the organization of F-actin and E-cadherin. Significantly, inhibition of atypical PKC (aPKC) blocks the calcium- and serum-independent membrane redistribution of TJ proteins induced by okadaic acid. Indeed, PP2A associates with and critically regulates the activity and distribution of aPKC during TJ formation. Thus, we provide the first evidence for calcium-dependent targeting of PP2A in epithelial cells, we identify PP2A as the first serine/threonine phosphatase associated with the multiprotein TJ complex, and we unveil a novel role for PP2A in the regulation of epithelial aPKC and TJ assembly and function.  相似文献   

8.
9.
Trefoil factor peptides are highly conserved secreted molecules characterized by heat and enzymatic digestion resistance. Intestinal trefoil factor 3 (TFF3) protects and repairs the gastrointestinal mucosa and restores normal intestinal permeability, which is dependent on the integrity of the tight junction (TJ) barrier and the TJ associated proteins claudin-1, zona occludens-1 (ZO-1) and occludin. Despite the important role of intestinal barrier dysfunction in the pathogenesis of inflammatory bowel diseases, the underlying mechanisms and associated molecules remain unclear. In the present study, we show that TFF3 and toll-like receptor 2 (TLR2) are functionally linked and modulate intestinal epithelial permeability via a mechanism that involves the PI3K/Akt pathway. We used the Caco-2 cell model to show that TLR2 and TFF3 inhibit the IL-1β induced increase in permeability and release of proinflammatory cytokines, and that this effect is mediated by activation of PI3K/Akt signaling. TLR2 silencing downregulated the expression of TFF3 and overexpression of TLR2 and TFF3 increased the levels of phospho-Akt. TFF3 overexpression significantly upregulated the expression of ZO-1, occludin and claudin-1 and this effect was abrogated by inhibition of the PI3K/Akt pathway. Taken together, our results indicate that TLR2 signaling selectively enhances intestinal TJ barrier integrity through a mechanism involving TFF3 and the activation of the PI3K/Akt pathway.  相似文献   

10.
Numb is highly expressed throughout the crypt-villus axis of intestinal mucosa and functions as cell fate determinant and integrator of cell-to-cell adhesion. Increased paracellular permeability of intestinal epithelial cells is associated with the epithelial barrier dysfunction of inflammatory bowel diseases (IBDs). The apical junctional complex (AJC) assembly and myosin light chain (MLC) phosphorylation regulate adherens junctions (AJ) and tight junctions (TJ). We determined whether and how Numb modulate the paracellular permeability of intestinal epithelial cells. Caco-2 intestinal epithelial cells and their Numb-interfered counterparts were used in the study for physiological, morphological and biological analyses. Numb, expressed in intestinal epithelial cells and located at the plasma membrane of Caco-2 cells in a basolateral to apical distribution, increased in the intestinal epithelial cells with the formation of the intestinal epithelial barrier. Numb expression decreased and accumulated in the cytoplasm of intestinal epithelial cells in a DSS-induced colitis mouse model. Numb co-localized with E-cadherin, ZO-1 and Par3 at the plasma membrane and interacted with E-cadherin and Par3. Knockdown of Numb in Caco-2 cells altered the F-actin structure during the Ca2+ switch assay, enhanced TNFα-/INF-γ-induced intestinal epithelial barrier dysfunction and TJ destruction, and increased the Claudin-2 protein level. Immunofluorescence experiments revealed that NMIIA and F-actin co-localized at the cell surface of Caco-2 cells. Numb knockdown in Caco-2 cells increased F-actin contraction and the abundance of phosphorylated MLC. Numb modulated the intestinal epithelial barrier in a Notch signaling-independent manner. These findings suggest that Numb modulates the paracellular permeability by affecting AJC assembly and MLC phosphorylation.  相似文献   

11.
12.
Previous results demonstrated that capsaicin induces the reversible tight junctions (TJ) opening via cofilin activation. The present study investigated the mechanisms underlying the reversible TJ opening and compared the effect to the irreversible opening induced by actin inhibitors. Capsaicin treatment induced the F-actin alteration unique to capsaicin compared to actin-interacting agents such as latrunculin A, which opens TJ irreversibly. Along with TJ opening, capsaicin decreased the level of F-actin at bicellular junctions but increased it at tricellular junctions accompanied with its concentration on the apical side of the lateral membrane. No change in TJ protein localization was observed upon exposure to capsaicin, but the amount of occludin was decreased significantly. In addition, cosedimentation analyses suggested a decrease in the interactions forming TJ, thereby weakening TJ tightness. Introduction of cofilin, LIMK and occludin into the cell monolayers confirmed their contribution to the transepithelial electrical resistance decrease. Finally, exposure of monolayers to capsaicin augmented the paracellular passage of both charged and uncharged compounds, as well as of insulin, indicating that capsaicin can be employed to modulate epithelial permeability. Our results demonstrate that capsaicin induces TJ opening through a unique mechanism, and suggest that it is a new type of paracellular permeability enhancer.  相似文献   

13.
Monocyte chemoattractant protein-1 (MCP-1 or CCL2) regulates blood-brain barrier permeability by inducing morphological and biochemical alterations in the tight junction (TJ) complex between brain endothelial cells. The present study used cultured brain endothelial cells to examine the signaling networks involved in the redistribution of TJ proteins (occludin, ZO-1, ZO-2, claudin-5) by CCL2. The CCL2-induced alterations in the brain endothelial barrier were associated with de novo Ser/Thr phosphorylation of occludin, ZO-1, ZO-2, and claudin-5. The phosphorylated TJ proteins were redistributed/localized in Triton X-100-soluble as well as Triton X-100-insoluble cell fractions. Two protein kinase C (PKC) isoforms, PKCalpha and PKCzeta, had a significant impact on this event. Inhibition of their activity using dominant negative mutants PKCalpha-DN and PKCzeta-DN diminished CCL2 effects on brain endothelial permeability. Previous data indicate that Rho/Rho kinase signaling is involved in CCL2 regulation of brain endothelial permeability. The interactions between the PKC and Rho/Rho kinase pathways were therefore examined. Rho, PKCalpha, and PKCzeta activities were knocked down using dominant negative mutants (T17Rho, PKCalpha-DN, and PKCzeta-DN, respectively). PKCalpha and Rho, but not PKCzeta and Rho, interacted at the level of Rho, with PKCalpha being a downstream target for Rho. Double transfection experiments using dominant negative mutants confirmed that this interaction is critical for CCL2-induced redistribution of TJ proteins. Collectively these data suggest for the first time that CCL2 induces brain endothelial hyperpermeability via Rho/PKCalpha signal pathway interactions.  相似文献   

14.
On the basis of transepithelial electrical resistance (TER) measurements, we found that capsaicin (100 μM)-treated human intestinal Caco-2 cells show a momentary increase in tight-junction (TJ) permeability (decrease in TER) followed by a complete recovery. We used proteome analysis to search for proteins that are associated with the recovery of TJ permeability in capsaicin-treated Caco-2 cells. A protein with a relative molecular mass of 14 kDa was found to be expressed more highly in capsaicin-treated cells than in nontreated cells. Mass spectrometry and sequence analyses revealed that the protein that is expressed significantly upon capsaicin treatment is the ribosomal protein P2; its cDNA sequence was identical to that found in the human genome database. An increase in the amount of cellular filamentous actin (F-actin) was shown after 8 h of incubation with capsaicin. It has been reported that P2 activates elongation factor 2, which stabilizes F-actin filaments, and that the depolymerization of F-actin is associated with the increase in TJ permeability (decrease in TER). Consequently, these results suggest that P2 plays an important role in the recovery of the TJ permeability in capsaicin-treated human intestinal cells. An erratum to this article is available at .  相似文献   

15.
Coxsackievirus B3 (CVB3) is the most common human pathogen for viral myocarditis. We have previously shown that the signaling protein p21(ras) GTPase-activating protein (RasGAP) is cleaved and that mitogen-activated protein kinases (MAPKs) ERK1/2 are activated in the late phase of CVB3 infection. However, the role of intracellular signaling pathways in CVB3-mediated myocarditis and the relative advantages of such pathways to host or virus remain largely unclear. In this study we extended our prior studies by examining the interaction between CVB3 replication and intracellular signaling pathways in HeLa cells. We observed that CVB3 infection induced a biphasic activation of ERK1/2, early transient activation versus late sustained activation, which were regulated by different mechanisms. Infection by UV-irradiated, inactivated virus capable of receptor binding and endocytosis triggered early ERK1/2 activation, but was insufficient to trigger late ERK1/2 activation. By using a general caspase inhibitor (zVAD.fmk) we further demonstrated that late ERK1/2 activation was not a result of CVB3-mediated caspase cleavage. Treatment of cells with U0126, a selective inhibitor of MAPK kinase (MEK), significantly inhibited CVB3 progeny release and decreased virus protein production. Furthermore, inhibition of ERK1/2 activation circumvented CVB3-induced apoptosis and viral protease-mediated RasGAP cleavage. Taken together, these data suggest that ERK1/2 activation is important for CVB3 replication and contributes to virus-mediated changes in host cells. Our findings demonstrate coxsackievirus takeover of a particular host signaling mechanism and uncover a prospective approach to stymie virus spread and preserve myocardial integrity.  相似文献   

16.
Intestinal epithelial tight junction (TJ) barrier dysfunction may lead to inflammation and mucosal injury. Glutamine (GLN) plays a role in maintenance of intestinal barrier function in various animal models and critically ill humans. Recent evidence from intestinal cell monolayers indicates that GLN maintains transepithelial resistance and decreases permeability. The mechanisms of these effects remain undefined. We hypothesized that GLN affects proteins involved in the intercellular junctional complex. GLN availability was controlled in Caco-2 monolayers by addition to the medium and treatment with methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Expression of TJ proteins, claudin-1, occludin, and zonula occluden (ZO)-1 was measured by immunoblotting. Localization of TJ proteins was evaluated by immunofluorescence light microscopy. Structure of TJ was determined by transmission electron microscopy (TEM). Deprivation of GLN decreased claudin-1, occludin, and ZO-1 protein expression and caused a disappearance of perijunctional claudin-1 and a reduction of occludin but had no effect on ZO-1. TEM revealed that MSO-treated cells in the absence of GLN formed irregular junctional complexes between the apical lateral margins of adjoining cells. These findings indicate that TJ protein expression and cellular localization in Caco-2 cell monolayers rely on GLN. This mechanism may similarly relate to GLN-mediated modulation of intestinal barrier function in stressed animals and humans.  相似文献   

17.
Dysfunction of the epithelial barrier is an important pathogenic factor of inflammatory bowel disease and other inflammatory conditions of the gut. Somatostatin (SST) has been demonstrated to reduce local and systemic inflammation reactions and maintain the integrity of the blood–brain barrier (BBB). To determine the beneficial effect of SST on lipopolysaccharide (LPS)-induced damage of the tight junction (TJ) and its mechanisms, Caco2 cells pretreated with SST (1 nM) or MEK inhibitor U0126 (10 μM) were exposed to LPS. LPS significantly reduced the expression of TJ proteins in a dose-dependent way. LPS (100 μg/ml) greatly induced Caco2 monolayer barrier dysfunction by decreasing transepithelial resistance and increasing epithelial permeability. Pretreatment with SST effectively improved the barrier dysfunction of Caco2 cells. SST significantly increased the expression of TJ proteins occludin and ZO-1 and inhibited the redistribution of TJ proteins due to LPS stimulation. Furthermore, SST decreased the LPS-induced phosphorylation of ERK1/2, and a selective MEK inhibitor markedly protected the barrier function against LPS disturbance by blocking the activation of the ERK–MAPK pathway in Caco2 cells. Besides, LPS significantly increased the mRNA level of SSTR5, which was partly inhibited by pretreatment with SST. In conclusion, the present study indicates that SST protects the Caco2 monolayer barrier against LPS-induced tight junction breakdown by down-regulating the activation of the ERK–MAPK pathway and suppression the activation of SSTR5.  相似文献   

18.
In vivo, pathological conditions such as ischemia and ischemia/reperfusion are known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Using an in vitro model of the BBB, consisting of brain-derived microvascular endothelial cells (BMEC), it was demonstrated that hypoxia-induced paracellular permeability was strongly aggravated by reoxygenation (H/R), which was prevented by catalase suggesting that H2O2 is the main mediator of the reoxygenation effect. Therefore, mechanisms leading to H2O2-induced hyperpermeability were investigated. N-acetylcysteine and suramin and furthermore usage of a G protein antagonist inhibited H202 effects suggesting that activation of cell surface receptors coupled to G proteins may mediate signal initiation by H2O2. Further, H2O2 activated phospholipase C (PLC) and increased the intracellular Ca2+ release because U73122, TMB-8, and the calmodulin antagonist W7 inhibited H2O2-induced hyperpermeability. H2O2 did not activate protein kinase C (PKC), nitric-oxide synthase (NOS), and phosphatidyl-inositol-3 kinase (PI3-K/Akt). Inhibition of the extracellular signal-regulated kinase (ERK1/ERK2 or p44/42 MAPK), but not of the p38 and of the c-jun NH2-terminal kinase (JNK), inhibited hyperpermeability by H2O2 and H/R completely. Corresponding to H2O2- and H/R-induced permeability changes the phosphorylation of the p44/42 MAP kinase was inhibited by the specific MAP kinase inhibitor PD98059 and by TMB-8 and W7. Paracellular permeability changes by H2O2 correlated to changes of the localization of the tight junction (TJ) proteins occludin, zonula occludens 1 (ZO-1), and zonula occludens 2 (ZO-2) which were prevented by blocking the p44/p42 MAP kinase activation. Results suggest that H2O2 is the main inducer of H/R-induced permeability changes. The hyperpermeability is caused by activation of PLC via receptor activation leading to the intracellular release of Ca2+ followed by activation of the p44/42 MAP kinase and paracellular permeability changes mediated by changes of the localization of TJ proteins.  相似文献   

19.
The sodium flux across individual tight junctions (TJ) of low-resistance MDCK cell monolayers grown on glass coverslips was determined as a measure of paracellular permeability. Increases in perfusate glucose concentration from 5 to 25 mm decreased tight junction Na permeability. This permeability decrease was not specific as nonmetabolizable analogues of glucose caused similar diminutions in TJ Na permeability. Stimulation of protein kinase A increased TJ Na permeability, and inhibition of protein kinase A decreased TJ Na permeability. Transepithelial electrical resistance of monolayers grown on permeable supports did not change as predicted from the observed alterations in TJ Na permeability of monolayers grown on glass coverslips. Fluorescent labeling of cell F-actin showed that increased F-actin in the perijunctional ring correlated with higher TJ Na permeability. Although a low dose of cytochalasin D did not change TJ Na permeability, it disrupted the cytoskeleton and blocked the decrease in TJ Na permeability caused by glucose. Cytochalasin D failed to block the effects of protein kinase A stimulation or inhibition on TJ Na permeability. We conclude that tight junction sodium permeability is regulated both by protein kinase A activity and by other processes involving the actin cytoskeleton. Received: 17 June 1997/Revised: 28 August 1997  相似文献   

20.
Tight junctions between intestinal epithelial cells prevent ingress of luminal macromolecules and bacteria and protect against inflammation and infection. During stress and inflammation, mast cells mediate increased mucosal permeability by unknown mechanisms. We hypothesized that mast cell tryptase cleaves protease-activated receptor 2 (PAR2) on colonocytes to increase paracellular permeability. Colonocytes expressed PAR2 mRNA and responded to PAR2 agonists with increased [Ca2+]i. Supernatant from degranulated mast cells increased [Ca2+]i in colonocytes, which was prevented by a tryptase inhibitor, and desensitized responses to PAR2 agonist, suggesting PAR2 cleavage. When applied to the basolateral surface of colonocytes, PAR2 agonists and mast cell supernatant decreased transepithelial resistance, increased transepithelial flux of macromolecules, and induced redistribution of tight junction ZO-1 and occludin and perijunctional F-actin. When mast cells were co-cultured with colonocytes, mast cell degranulation increased paracellular permeability of colonocytes. This was prevented by a tryptase inhibitor. We determined the role of ERK1/2 and of beta-arrestins, which recruit ERK1/2 to PAR2 in endosomes and retain ERK1/2 in the cytosol, on PAR2-mediated alterations in permeability. An ERK1/2 inhibitor abolished the effects of PAR2 agonist on permeability and redistribution of F-actin. Down-regulation of beta-arrestins with small interfering RNA inhibited PAR2-induced activation of ERK1/2 and suppressed PAR2-induced changes in permeability. Thus, mast cells signal to colonocytes in a paracrine manner by release of tryptase and activation of PAR2. PAR2 couples to beta-arrestin-dependent activation of ERK1/2, which regulates reorganization of perijunctional F-actin to increase epithelial permeability. These mechanisms may explain the increased epithelial permeability of the intestine during stress and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号