首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We inserted the Tn10 tetracycline resistance determinant (tet) into the multicopy plasmid pACYC177, and we examined the phenotype of Escherichia coli K-12 strains harboring these plasmids. In agreement with others, we find that Tn10 tet exhibits a negative gene dosage effect. Strains carrying multicopy Tn10 tet plasmids are 4- to 12-fold less resistant to tetracycline than are strains with a single copy of Tn10 in the bacterial chromosome. In addition, we find that multicopy tet strains are 30- to 100-fold less resistant to the tetracycline derivative 5a,6-anhydrotetracycline than are single-copy tet strains. Multicopy tet strains are, in fact, 10- to 25-fold more sensitive to anhydrotetracycline than are strains that lack tet altogether. The hypersensitivity of multi-copy strains to anhydrotetracycline is correlated with the effectiveness of anhydrotetracycline as an inducer of tet gene expression, rather than its effectiveness as an inhibitor of protein synthesis. Anhydrotetracycline is 50- to 100-fold more effective than tetracycline as an inducer of tetracycline resistance and as an inducer of beta-galactosidase in strains that harbor tet-lac gene fusions. In contrast, anhydrotetracycline appears to be two- to fourfold less effective than tetracycline as an inhibitor of protein synthesis. Both anhydrotetracycline and tetracycline induce synthesis of tet polypeptides in minicells harboring multicopy tet plasmids. Differences between E. coli K-12 backgrounds influence the tetracycline and anhydrotetracycline sensitivity of multicopy strains; ZnCl2 enhances the tetracycline and anhydrotetracycline sensitivity of these strains two- to threefold. We propose that the overexpression of one or more Tn10 tet gene products inhibits the growth of multicopy tet strains and accounts for their relative sensitivity to inducers of tet gene expression.  相似文献   

2.
Tetracycline Induces Stabilization of mRNA in Bacillus subtilis   总被引:2,自引:0,他引:2       下载免费PDF全文
The tet(L) gene of Bacillus subtilis confers low-level tetracycline (Tc) resistance. Previous work examining the >20-fold-inducible expression of tet(L) by Tc demonstrated a 12-fold translational induction. Here we show that the other component of tet(L) induction is at the level of mRNA stabilization. Addition of a subinhibitory concentration of Tc results in a two- to threefold increase in tet(L) mRNA stability. Using a plasmid-borne derivative of tet(L) with a large in-frame deletion of the coding sequence, the mechanism of Tc-induced stability was explored by measuring the decay of tet(L) mRNAs carrying specific mutations in the leader region. The results of these experiments, as well as experiments with a B. subtilis strain that is resistant to Tc due to a mutation in the ribosomal S10 protein, suggest different mechanisms for the effects of Tc on translation and on mRNA stability. The key role of the 5' end in determining mRNA stability was confirmed in these experiments. Surprisingly, the stability of several other B. subtilis mRNAs was also induced by Tc, which indicates that addition of Tc may result in a general stabilization of mRNA.  相似文献   

3.
Deletions in the tet genes derived from Tn10 were formed from different tet::Tn5 insertion mutations by removing DNA sequences located between a HindIII site in Tn5 and a HindIII site adjacent to the tet genes. Tetracycline-sensitive point mutations were mapped in recombination tests with the deletions and were thus aligned with the genetic and physical map of the tet region. Plasmids carrying point mutations were tested for complementation with derivatives of pDU938, a plasmid carrying cloned tet genes derived from Tn10 which had been inactivated by Tn5 insertions. Complementation occurred between promoter-proximal tet point mutations and distal tet::Tn5 insertions, suggesting the existence of two structural genes, tetA and tetB. These results, together with the analysis of polypeptides in minicells harboring pDU938tet::Tn5 mutants, suggested that tetA and tetB are expressed coordinately in an operon. The tetB gene encodes the previously characterized 36,000-dalton cytoplasmic membrane TET protein, but the product of tetA was not identified. Point mutations in either tetA or tetB led to the defective expression of the resistance mechanism involving tetracycline efflux. It is suggested that the tetA and tetB products interact cooperatively in the membrane to express resistance.  相似文献   

4.
The sequences of six tetracycline efflux proteins and three transport proteins which have some resemblance to them were compared. The tetracycline efflux proteins fall into three families: (i) those encoded by pBR322, RP1, and Tn10 (Escherichia coli); (ii) pT181 (Staphylococcus aureus) and pTHT15 (Bacillus subtilis); and (iii) tet347 (Streptomyces rimosus). There is global sequence homology within each of the first two families, but there is none between the families. The pT181/pTHT15 family shares close homology with the N-terminal half of the methylenomycin A efflux protein (Streptomyces coelicor), while tet347 resembles the C-terminal half. Portions of the N-terminal half of the Tn10-encoded protein show significant resemblance to portions in the N-terminal half of the pT181/pTHT15 family, but this sometimes occurs among transport proteins which do not have a common substrate. Tetracycline efflux proteins, therefore, appear to have arisen on at least two, or possibly three, separate occasions, probably from other transport proteins.  相似文献   

5.
pT181 is a naturally occurring Staphylococcus aureus plasmid, encoding inducible resistance to tetracycline. The plasmid has a copy number of about 20 per cell, and belongs to the incompatibility group inc3. The complete nucleotide sequence of pT181 has been determined and consists of 4437 bp. The nucleotide sequence contains 69.8% A-T and 30.2% G-C pairs. pT181 was found to contain four open reading frames capable of coding for polypeptides containing more than 50 amino acids. All the putative polypeptides are coded by one strand. The molecular weights of the four putative polypeptides are (in daltons): A, 37,500; B, 35,000; C, 23,000, and D, 18,000. Polypeptide A corresponds to the repC protein, earlier shown to be specifically required for pT181 replication. Polypeptide B (and possibly polypeptide D) are involved in tetracycline resistance. No role has yet been established for polypeptide C; deletion of the coding sequence for the C polypeptide has no detectable effect on any property of the pT181 plasmid. A region consisting of about 1200 bp contains information for the replication and copy number control of this plasmid. The sequencing results are discussed in relation to the replication properties and tetracycline resistance associated with the pT181 plasmid.  相似文献   

6.
7.
8.
9.
Three Tn10 polypeptides were detected by analyzing the proteins synthesized in ultraviolet light-irradiated Escherichia coli cells after infection with lambda::Tn10. One of these polypeptides was the previously identified 36,000-dalton TET polypeptide. The other two had approximate sizes of 25,000 and 13,000 daltons. The syntheses of both the TET polypeptide and the 25,000-dalton polypeptide were inducible by tetracycline in lambda-immune hosts. Similarly, the synthesis of the TET polypeptide was inducible in nonimmune hosts. However, the synthesis of the 25,000-dalton polypeptide was constitutive in nonimmune hosts. An amber mutation in a gene required for tetracycline resistance on lambda::Tn10 was isolated that eliminated the synthesis of the TET polypeptide in sup+ hosts but not the synthesis of the 25,000-dalton or the 13,000-dalton polypeptides. The expression of tetracycline resistance from wild-type Tn10 was found to be anomalous in E. coli strains carrying the amber suppressors supD, supE, and supF. In general, strains containing these nonsense suppressors were less resistant to tetracycline.  相似文献   

10.
Analysis of the tet gene of plasmid pCIS7 isolated from Bacillus subtilis   总被引:3,自引:0,他引:3  
C L Ives  K F Bott 《Gene》1990,94(1):115-119
We have previously shown that plasmid pCIS7, which contains 11.5 kb of Bacillus subtilis DNA isolated from a tetracycline-sensitive (TcS) strain, confers Tc resistance when integrated and amplified in the chromosome of TcS B. subtilis 168trpC2 [Ives and Bott, J. Bacteriol. 171 (1989) 1801-1810]. Here, we report that the number of integrated plasmid sequences required to confer Tc resistance is greater than the 20 copies seen with increasing chloramphenicol selection and, by dot-blot analysis, exceeds 100 copies per cell. The amplification is accompanied by a corresponding increase in mRNA encoding the tet gene. The tet gene sequence of pCIS7 has been compared to B. subtilis tetGSY908 [Sakaguchi et al., Biochim. Biophys. Acta. 94 (1988) 49-57] and other Gram-positive tet genes. The tet gene of pCIS7 is a member of the class L TcR determinants, and probably confers Tc resistance by increasing the efflux of Tc from the bacterial cell.  相似文献   

11.
12.
Reversible tetracycline-dependent gene regulation allows induction of expression with the tetracycline repressor (TetR) or gene silencing with the newly developed reverse mutant revTetR. We report here the implementation of both approaches with full regulatory range in gram-positive bacteria as exemplified in Bacillus subtilis. A chromosomally located gene is controlled by one or two tet operators. The precise adjustment of regulatory windows is accomplished by adjusting tetR or revtetR expression via different promoters. The most efficient induction was 300-fold in the presence of 0.4 microM anhydrotetracycline obtained with a Pr-xylA-tetR fusion. Reversible 500-fold gene knockouts were obtained in B. subtilis after adjusting expression of revTetR by synthetically designed promoters. We anticipate that these tools will also be useful in many other gram-positive bacteria.  相似文献   

13.
14.
The effects of two deoxyribonucleic acid (DNA) gyrase inhibitors, nalidixic acid and novobiocin, on the gene expression of plasmid pBR322 in Escherichia coli minicells were studied. Quantitative estimates of the synthesis of pBR322-coded polypeptides in novobiocin-treated minicells showed that the synthesis of a polypeptide of molecular weight of 34,000 (the tetracycline resistance protein) was reduced to 11 to 20% of control levels, whereas the amount of a polypeptide of 30,500 (the beta-lactamase precursor) was increased to as much as 200%. Nalidixic acid affected the synthesis of the tetracycline resistance protein similarly to novobiocin, although to a lesser extent. The effects of nalidixic acid were not observed in a nalidixic-resistant mutant; those induced by novobiocin were only partially suppressed in a novobiocin-resistant mutant. The synthesis of one of the inducible tetracycline-resistant proteins (34,000) coded by plasmid pSC101 was also reduced in nalidixic acid- and novobiocin-treated minicells. These results suggest that the gyrase inhibitors modified the interaction of ribonucleic acid polymerase with some promoters, either by decreasing the supercoiling density of plasmid DNA or by altering the association constant of the gyrase to specific DNA sites.  相似文献   

15.
16.
17.
The presence of the tetracycline resistance determinant tet(M) in human clinical isolates of Escherichia coli is described for the first time in this report. The homologue was >99% identical to the tet(M) genes reported to occur in Lactobacillus plantarum, Neisseria meningitidis, and Streptococcus agalactiae, and 3% of the residues in its deduced amino acid sequence diverge from tet(M) of Staphylococcus aureus. Sequence analysis of the regions immediately flanking the gene revealed that sequences upstream of tet(M) in E. coli have homology to Tn916; however, a complete IS26 insertion element was present immediately upstream of the promoter element. Downstream from the termination codon is an insertion sequence that was homologous to the ISVs1 element reported to occur in a plasmid from Vibrio salmonicida that has been associated with another tetracycline resistance determinant, tet(E). Results of mating experiments demonstrated that the E. coli tet(M) gene was on a mobile element so that resistance to tetracycline and minocycline could be transferred to a susceptible strain by conjugation. Expression of the cloned tet(M) gene, under the control of its own promoter, provided tetracycline and minocycline resistance to the E. coli host.  相似文献   

18.
The tet(M) tetracycline resistance gene has been found in a wide variety of clinically important bacteria. It has been shown previously (Burdett, V. (1986) J. Bacteriol. 165, 564-569) that the tet(M) gene product mediates resistance at the level of protein synthesis as judged by in vitro assay. Using this assay, large amounts of protein were purified from an Escherichia coli overproducer expressing the gene under control of a T7 promoter. The purified activity consists of a single polypeptide of molecular weight 68,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was confirmed to be the tet(M) gene product by amino-terminal sequence analysis. Purified Tet(M) has an associated ribosome-dependent GTPase with the specific activity being similar to that of the corresponding activity associated with elongation factor G. Since Tet(M) also displays substantial homology to elongation factor G throughout its length, Tet(M) may function as an analog of this elongation factor.  相似文献   

19.
The tetracycline resistance determinant in transposon Tn10 consists of two genes, the tetA resistance gene and the tetR repressor gene, that are transcribed from divergent overlapping promoters. We determined the levels of pulse-labeled tet messenger RNA in Escherichia coli strains with the Tn10 tet genes on a multicopy plasmid. Addition of the inducer 5a,6-anhydrotetracycline results in a 270- to 430-fold increase in tetA mRNA and a 35- to 65-fold increase in tetR mRNA. As judged by the relative molar amounts of tetA and tetR mRNA synthesized under maximally inducing conditions, the tetA promoter (tetPA) is 7 to 11 times more active than the two tetR promoters (tetPR1 and tetPR2) combined. We characterized ten mutations in tetPA, including nine single-base-pair substitutions and a 30-base-pair deletion. All of the single-base-pair changes reduce the agreement with the consensus sequence for promoters recognized by E. coli RNA polymerase. Mutations in highly conserved nucleotides result in a 200- to 600-fold reduction in tetPA activity in vivo. Unexpectedly, tetPA mutations reduce by two- to fourfold the combined activity in vivo of tetPR1 and tetPR2, in spite of their locations outside the -35 and -10 regions of tetPR1 and tetPR2. For two tetPA mutations, the negative effect on tetPR activity was also demonstrated in tetR- tetPR-lacZ operon fusion strains, thus eliminating the possibility that it is due to variations in either plasmid copy-number or induction efficiency. The pleiotropic effects of tetPA mutations are discussed in terms of the expectation that the overlapping tet promoters compete for RNA polymerase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号