首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To isolate some new genes controlling the process of spontaneous mutagenesis, a collection of 16 yeast strains with enhanced rate of spontaneous canavanine resistant mutations was obtained. Genetical analysis allowed to define that the mutator phenotype of these strains is due to a single nuclear mutation. Such mutations were called hsm (high spontaneous mutagenesis). Recombinational test showed that 5 mutants under study carried 5 nonallelic mutations. It was revealed that the mutation hsm3-1 is a nonspecific mutator elevating the rate of both spontaneous canavanine resistant mutations and the frequency of reversions in mutations lys1-1 and his1-7. Genetical analysis revealed that mutation hsm3-1 is recessive. The study of cross sensitivity of mutator strains to physical and chemical mutagens demonstrated that 12 of 16 hsm mutants were resistant to the lethal action of UV, gamma rays and methylmethanesulfonate, and 4 mutants were only sensitive to these factors. Possible nature of hsm mutations is discussed.  相似文献   

2.
Since some amino acids, polyols and sugars in cells are thought to be osmoprotectants, we expected that several amino acids might also contribute to enhancing freeze tolerance in yeast cells. In fact, proline and charged amino acids such as glutamate, arginine and lysine showed a marked cryoprotective activity nearly equivalent to that of glycerol or trehalose, both known as major cryoprotectants for Saccharomyces cerevisiae. To investigate the cryoprotective effect of proline on the freezing stress of yeast, we isolated proline-analogue-resistant mutants derived from a proline-non-utilizing strain of S. cerevisiae. When cultured in liquid minimal medium, many mutants showed a prominent increase, two- to approximately tenfold, in cell viability compared to the parent after freezing in the medium at −20 °C for 1 week. Some of the freeze-tolerant mutants were found to accumulate a higher amount of proline, as well as of glutamate and arginine which are involved in proline metabolism. It was also observed that proline-non-utilizer and the freeze-tolerant mutants were able to grow against osmotic stress. These results suggest that the increased flux in the meta-bolic pathway of specific amino acids such as proline is effective for breeding novel freeze-tolerant yeasts. Received: 6 November 1996 / Accepted: 7 December 1996  相似文献   

3.
Sphingolipids comprise a large, widespread family of complex eucaryotic-membrane constituents of poorly defined function. The yeast Saccharomyces cerevisiae is particularly suited for studies of sphingolipid function because it contains a small number of sphingolipids and is amenable to molecular genetic analysis. Moreover, it is the only eucaryote in which mutants blocked in sphingolipid biosynthesis have been isolated. Beginning with a nonreverting sphingolipid-defective strain that requires the addition of the long-chain-base component of sphingolipids to the culture medium for growth, we isolated two strains carrying secondary, suppressor mutations that permit survival in the absence of exogenous long-chain base. Remarkably, the suppressor strains made little if any sphingolipid. A study of how the suppressor gene products compensate for the lack of sphingolipids may reveal the function(s) of these membrane lipids in yeast cells.  相似文献   

4.
Mutants resistant to the amino acid analogues dl-thiaisoleucine, dl-4-azaleucine, 5,5,5-trifluoro-dl-leucine and l-O-methylthreonine, were isolated from Saccharomyces cerevisiae wine yeast strains. The fermentative production of secondary metabolites by the mutants was tested in grape must. Higher alcohols, acetaldehyde and acetic acid concentration varied depending on strain and analogue. Most of the mutants produced increased amounts of amyl alcohol. A remarkable variability in the level of n-propanol, isobutanol, acetaldehyde and acetic acid was observed. In practical application, the use of mutants resistant to amino acid analogues can improve the quality of wines by reducing or increasing the presence of some secondary compounds.  相似文献   

5.
Mutants resistant to the amino acid analogues dl-thiaisoleucine, dl-4-azaleucine, 5,5,5-trifluoro-dl-leucine and l-O-methylthreonine, were isolated from Saccharomyces cerevisiae wine yeast strains. The fermentative production of secondary metabolites by the mutants was tested in grape must. Higher alcohols, acetaldehyde and acetic acid concentration varied depending on strain and analogue. Most of the mutants produced increased amounts of amyl alcohol. A remarkable variability in the level of n-propanol, isobutanol, acetaldehyde and acetic acid was observed. In practical application, the use of mutants resistant to amino acid analogues can improve the quality of wines by reducing or increasing the presence of some secondary compounds.  相似文献   

6.
Response of Saccharomyces cerevisiae strains to antineoplastic agents   总被引:1,自引:1,他引:0  
The effect of several antineoplastic agents on Saccharomyces cerevisiae strains has been investigated. Minimum inhibitory concentration (MIC), minimum cytotoxic concentration (MCC) and median effective concentration (EC50) were determined to identify strains with inherent sensitivity to the agents tested. Several strains proved to be sensitive to the antimetabolites 5-fluorouracil and methotrexate as well as to doxorubicin and cis-platine. On the contrary m -amsacrine, procarbazine, vinca alcaloids, melphalan and hydroxyurea were inactive at concentrations up to 400 μg ml −1. The strain ATCC 2366, the most relatively sensitive to the agents tested, was used for studying the effect of treatment duration and of drug concentration on cell survival. Methotrexate and cis-platine, which according to MIC and MCC tests seemed ineffective for this strain, reduced survival significantly after 6 h of treatment. A correlation of the shape of the survival curves with MIC and MCC values was attempted.  相似文献   

7.
Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14 alpha-demethylase. Resistance is restored through complementation by the plasmid-borne wild type gene from either S. cerevisiae or Candida tropicalis. Neither Southern hybridization nor Western immunoblot techniques provided evidence for a second NADPH-cytochrome P450 reductase gene, suggesting that an alternate pathway may provide for the functions of this reductase in S. cerevisiae.  相似文献   

8.
In this study, we tested the potential of Fourier-transform infrared absorption spectroscopy to screen, on the one hand, Saccharomyces cerevisiae and non-S. cerevisiae strains and, on the other hand, to discriminate between S. cerevisiae and Saccharomyces bayanus strains. Principal components analysis (PCA), used to compare 20 S. cerevisiae and 21 non-Saccharomyces strains, showed only 2 misclassifications. The PCA model was then used to classify spectra from 14 Samos strains. All 14 Samos strains clustered together with the S. cerevisiae group. This result was confirmed by a routinely used electrophoretic pattern obtained by pulsed-field gel electrophoresis. The method was then tested to compare S. cerevisiae and S. bayanus strains. Our results indicate that identification at the strain level is possible. This first result shows that yeast classification and S. bayanus identification can be feasible in a single measurement.  相似文献   

9.
10.
The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production.  相似文献   

11.
12.
Recombination in ultraviolet-sensitive strains of Saccharomyces cerevisiae   总被引:9,自引:0,他引:9  
R Snow 《Mutation research》1968,6(3):409-418
  相似文献   

13.
Urea transport-defective strains of Saccharomyces cerevisiae.   总被引:7,自引:7,他引:0  
R Sumrada  M Gorski    T Cooper 《Journal of bacteriology》1976,125(3):1048-1056
Experiments characterizing the urea active transport system in Saccharomyces cerevisiae indicate that (i) formamide and acetamide are strong competitive inhibitors of urea accumulation, (ii) uptake is maximal at pH 3.3 and is 80% inhibited at pH 6.0, and (iii) adenosine 5'-triphosphate generated by glycolysis in conjunction with formation of an ion gradient is likely the driving force behind urea transport. Mutant strains were isolated that are unable to accumulate urea at external concentrations of 0.25 mM. These strains also exhibit a depressed growth rate on 10 mM urea, indicating existence of a relationship between the active transport and facilitated diffusion modes of urea uptake.  相似文献   

14.
Mutants of Candida utilis and a haploid strain of Saccharomyces cerevisiae were isolated, after ultraviolet light mutagenesis, which had increased sensitivities to snail gut enzymes (ses). Three of the five S. cerevisiae mutants tested had increased sensitivities to porcine pepsin, all were more susceptible to a sequential treatment with pepsin, lipase, peptidase, and trypsin, four were sensitive to osmotic shock, and two had increased glucan/mannan ratios in their cell walls. All combinations of mutants showed positive complementation in heterozygous diploids, although complementation between one pair, which had the same phenotype, was incomplete, indicating that four to five different cistrons were involved. All mutations were found to be recessive. Haploid strains bearing pairs of ses mutations were not markedly more sensitive to mammalian digestive enzymes than strains with single mutations. Rat-feeding experiments with three mutants and the parental strains indicated that the protein was efficiently utilized in all cases. Net protein ratios for the two mutants of S. cerevisiae tested were slightly higher than that for their parent, but the differences were of marginal significance.  相似文献   

15.
Amplification of the flux toward the pentose phosphate (PP) pathway might be of interest for various S. cerevisiae based industrial applications. We report an evolutionary engineering strategy based on a long-term batch culture on gluconate, a substrate that is poorly assimilated by S. cerevisiae cells and is metabolized by the PP pathway. After adaptation for various periods of time, we selected strains that had evolved a greater consumption capacity for gluconate. (13)C metabolic flux analysis on glucose revealed a redirection of carbon flux from glycolysis towards the PP pathway and a greater synthesis of lipids. The relative flux into the PP pathway was 17% for the evolved strain (ECA5) versus 11% for the parental strain (EC1118). During wine fermentation, the evolved strains displayed major metabolic changes, such as lower levels of acetate production, higher fermentation rates and enhanced production of aroma compounds. These represent a combination of novel traits, which are of great interest in the context of modern winemaking.  相似文献   

16.
17.
Unheated and heat-stressed Saccharomyces cerevisiae cells were examined for their relative sensitivities to butylated hydroxyanisole (BHA), tertiary butylhydroquinone (TBHQ), and propyl gallate. Heated cells had significant (P less than or equal to 0.05) increases in sensitivity to 50 micrograms of BHA, 100 micrograms of TBHQ, and 1,000 micrograms of propyl gallate per ml as compared with unheated cells when surface plated on antioxidant-supplemented recovery agar. The rate of increase in size of colonies developed by heated cells was slower than that of unheated cells, and the presence of antioxidants in recovery agar enhanced this effect. Heat-stressed cells also had increased sensitivity to ethanol. Incubation temperatures of 15, 21, 30, and 37 degrees C for enumerating unheated cells had no significant effect on the numbers of colonies formed on unsupplemented recovery agar; however, incorporation of 100 micrograms of BHA, 200 micrograms of TBHQ, or 1,000 micrograms of propyl gallate per ml into agar resulted in significant decreases in the number of colonies formed by heated cells at various incubation temperatures. The detrimental effects of TBHQ and propyl gallate on repair of heat-injured cells are apparently expressed at a temperature higher than that observed for BHA. It is suggested that the adverse effects of antioxidants on repair of heat-injured S. cerevisiae cells may be associated with oxygen availability.  相似文献   

18.
苯甲醛高耐受性酵母菌的选育   总被引:1,自引:0,他引:1  
梁新乐 《生物学杂志》2003,20(1):30-31,39
介绍一种经过长期诱导、驯化作用来选育耐性菌株的方法。通过固定化细胞的间歇补料培养方式和长期诱导、驯化后,筛选出8株具有较高苯甲醛耐受性的酿酒酵母菌株,其中菌株Sbht-35-23对苯甲醛的耐受性达到0.9%,并保持较高的稳定活性。采用这些具有较高耐性的酿酒酵母菌株生物合成L-苯基乙酰基甲醇(L-PAC),将有利于提高转化率。  相似文献   

19.
20.
Isolation of secretory vesicles from Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
Purification of secretory vesicles from Saccharomyces cerevisiae has been hindered because these organelles normally represent a small proportion of cellular membranes. In the yeast secretory mutant sec1, secretory vesicles accumulate intracellularly in large quantities. Using a sec1 strain we have devised a procedure for the partial purification of these vesicles. The purification employs differential and density gradient centrifugations and an electrophoretic separation of membranes. The fractions obtained from this procedure are enriched for secretory vesicles at least fivefold over other cellular membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane fractions reveals a distinct set of polypeptides associated with secretory vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号