首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detergent solubilization and subsequent delipidation of bacteriorhodopsin (bR) results in the formation of a new species absorbing maximally at 480 nm (bR480). Upon lowering the pH, its absorption shifts to 540 nm (bR540). The pK of this equilibrium is 2.6, with the higher pH favoring bR480 (Baribeau, J. and Boucher, F. (1987) Biochim. Biophysica Acta, 890, 275-278). Resonance Raman spectroscopy shows that bR480, like the native bR, contains a protonated Schiff base (PSB) linkage between the chromophore and the protein. However, the Schiff base vibrational frequency in bR480, and its shift upon deuteration, are quite different from these in the native bR, suggesting changes in the Schiff base environment upon delipidation. Infrared absorption and circular-dichroism (CD) spectral studies do not show any net change in the protein secondary structure upon formation of bR480. It is shown that deprotonation of the Schiff base is not the only mechanism of producing hypsochromic shift in the absorption maximum of bR-derived pigments, subtle changes in the protein tertiary structure, affecting the Schiff base environment of the chromophore, may play an equally significant role in the color regulation of bR-derived pigments.  相似文献   

2.
We report the effect of partial delipidation and monomerization on the protein conformational changes of bacteriorhodopsin (bR) as a function of temperature. Removal of up to 75% of the lipids is known to have the lattice structure of the purple membrane, albeit as a smaller unit cell, whereas treatment by Triton monomerizes bR into micelles. The effects of these modifications on the protein secondary structure is analyzed by monitoring the protein amide I and amide II bands in the Fourier transform-infrared (FT-IR) spectra. It is found that removal of the first 75% of the lipids has only a slight effect on the secondary structure at physiological temperature, whereas monomerizing bR into micelles alters the secondary structure considerably. Upon heating, the bR monomer is found to have a very low thermal stability compared with the native bR with its melting point reduced from 97 to 65 degrees C, and the pre-melting transition in which the protein changes conformation in native bR at 80 degrees C could not be observed. Also, the N[bond]H to N[bond]D exchange of the amide II band is effectively complete at room temperature, suggesting that there are no hydrophobic regions that are protected from the aqueous medium, possibly explaining the low thermal stability of the monomer. On the other hand, 75% delipidated bR has its melting temperature close to that of the native bR and does have a pre-melting transition, although the pre-melting transition occurs at significantly higher temperature than that of the native bR (91 degrees C compared with 80 degrees C) and is still reversible. Furthermore, we have also observed that the reversibility of this pre-melting transition of both native and partially delipidated bR is time-dependent and becomes irreversible upon holding at 91 degrees C between 10 and 30 min. These results are discussed in terms of the lipid and lattice contribution to the protein thermal stability of native bR.  相似文献   

3.
bR, N-like and O-like intermediate states of [15N]methionine-labelled wild type and D85N/T170C bacteriorhodopsin were accumulated in native membranes by controlling the pH of the preparations. 15N cross polarization and magic angle sample spinning (CPMAS) NMR spectroscopy allowed resolution of seven out of nine resonances in the bR-state. It was possible to assign some of the observed resonances by using 13C/15N rotational echo double resonance (REDOR) NMR and Mn2+ quenching as well as D2O exchange, which helps to identify conformational changes after the bacteriorhodopsin Schiff base reprotonation. The significant differences in chemical shifts and linewidths detected for some of the resonances in N- and O-like samples indicate changes in conformation, structural heterogeneity or altered molecular dynamics in parts of the protein.  相似文献   

4.
Proline, noted as a hydrophilic residue with helix-breaking potential, nevertheless occurs widely in putatively alpha-helical transmembrane segments of many transport proteins. Ligand-activated or enzyme-assisted trans/cis isomerization of an X-proline peptide bond (where X = any amino acid)--a dynamic, reversible event which could alter the orientation of a transmembrane alpha-helix--may provide the molecular basis for a protein channel regulatory process. Further elucidation of such a function requires knowledge of the isomeric status of the X-Pro bonds in native conformations of membrane proteins. We have used 13C nuclear magnetic resonance (NMR) spectroscopy to examine the conformation of intramembranous X-Pro peptide bonds in biosynthetically-labelled samples of a model transport protein, bacteriorhodopsin (bR) (purple membrane). Spectra of 13C-Tyr-carbonyl labelled bR (in the solvent system CHCl3:CD3OD (1:1) + 0.1 M LiClO4) first established that all 11 bR Tyr residues were sufficiently mobile for their resonances to be detected and resolved, independent of their domain location within the bR sequence. By taking advantage of the known diagnostic chemical shifts of the isomers of Pro-C gamma carbon resonances, spectra of bR labelled with 13C gamma-Pro were then used to demonstrate that all 11 bR X-Pro peptide bonds--including those within the protein's membrane domain (Pro50, Pro91, Pro186)--are in the trans conformation in resting state bR.  相似文献   

5.
A30P and A53T mutations of the presynaptic protein alpha-synuclein are associated with familial forms of Parkinson disease. NMR spectroscopy demonstrates that Parkinsonism-linked mutations greatly perturb specific tertiary interactions essential for the native state of alpha-synuclein. However, alpha-synuclein is not completely unfolded but exhibits structural fluctuations on the time scale of secondary structure formation and loses its native conformation gradually when protein stability decreases. The redistribution of the ensemble of alpha-synuclein conformers may underlie toxic gain-of-function by fostering self-association and altered binding affinity to ligands and receptors.  相似文献   

6.
The effect of divalent ion binding to deionized bacteriorhodopsin (dI-bR) on the thermal transitions of the protein secondary structure have been studied by using temperature-dependent Fourier transform infrared (FT-IR) spectroscopy. The native metal ions in bR, Ca(2+), and Mg(2+), which we studied previously, are compared with Mn(2+), Hg(2+), and a large, synthesized divalent organic cation, ((Et)(3)N)(2)Bu(2+). It was found that in all cases of ion regeneration, there is a pre-melting, reversible conformational transition in which the amide frequency shifts from 1665 to 1652 cm(-1). This always occurs at approximately 80 degrees C, independent of which cation is used for the regeneration. The irreversible thermal transition (melting), monitored by the appearance of the band at 1623 cm(-1), is found to occur at a lower temperature than that for the native bR but higher than that for acid blue bR in all cases. However, the temperature for this transition is dependent on the identity of the cation. Furthermore, it is shown that the mechanism of melting of the organic cation regenerated bR is different than for the metal cations, suggesting a difference in the type of binding to the protein (either to different sites or different binding to the same site). These results are used to propose specific direct binding mechanisms of the ions to the protein of deionized bR.  相似文献   

7.
Protein stability is a crucial factor to consider when attempting to crystallize integral membrane proteins. Cubic phase, or in meso, lipid-bilayer crystallization media are thought to provide native-like environments that should facilitate membrane protein crystallization by helping to stabilize the native protein conformation for the duration of the crystallization process. While excellent crystals of bacteriorhodopsin (bR) and other Halobacterial rhodopsins have been obtained in lipid-bilayer gels formed with monoglycerides, success remains elusive in the general application of such media to other membrane proteins. Additionally, we have noted that some mutants of bR are highly unstable in gels formed with monoolein. Phosphatidylethanolamines (PE) and derivatives of PE represent another class of lipids that can form connected-bilayer gels. When wildtype bR and a labile bR mutant were reconstituted into this phospholipid gel, spectroscopy showed that the protein is both more stable and has improved conformational homogeneity as compared to gels formed using monoolein. In addition, we demonstrate that well-diffracting crystals of bR can be grown from a PE-based crystallization medium. Since most proteins lack a stability-indicating chromophore and other structure-based analytical techniques are poorly compatible with the lipid gel, we developed a generally-applicable spectroscopic technique based on the intrinsic fluorescence of tryptophan residues. This fluorescence assay makes possible the rapid evaluation of lipid gels as media for the crystallization of membrane proteins.  相似文献   

8.
This paper describes how the structure and concentration level of a detergent used for substitution after bacteriorhodopsin (bR) solubilization affect the reconstitution of the bR into phospholipid planar bilayers. A direct insertion method was used for the bR reconstitution into the bilayers. Two detergents representing the two major types were used: sodium deoxycholate with a cholane-ring structure, and octylglucoside with a linear (or chain) structure. We then characterized the reconstitution for the two detergents by considering the detergent separation profiles and the photocurrent variations upon addition of lanthanum chloride and the protonophore FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone). We found that for successful transmembrane reconstitution of bR the detergent with the cholane-ring structure was preferable to that with the linear structure when the detergent concentration was above its critical micellar concentration. This preference was explained by the ease with which the detergent with the cholane-ring structure was removed from protein compared to that with the linear structure. Finally, we proposed a scheme for the reconstitution of the protein.  相似文献   

9.
The physico-chemical properties of short-chain phosphatidylcholine are reviewed to the extent that its biological activity as a mild detergent can be rationalized. Long-chain diacylphosphatidylcholines are typical membrane phospholipids that form preferentially smectic lamellar phases (bilayers) when dispersed in water. In contrast, the preferred phase of the short-chain analogues dispersed in excess water is the micellar phase. The preferred conformation and the dynamics of short-chain phosphatidylcholines in the monomeric and micellar state present in H(2)O are discussed. The motionally averaged conformation of short-chain phosphatidylcholines is then compared to the single-crystal structures of membrane lipids. The main conclusion emerging is that in terms of preferred conformation and motional averaging short-chain phosphatidylcholines closely resemble their long-chain analogues. The dispersing power of short-chain phospholipids is emphasized in the second part of the review. Evidence is presented to show that this class of compounds is superior to most other detergents used in the solubilization of membrane proteins and the reconstitution of the solubilized proteins to artificial membrane systems (proteoliposomes). The prominent feature of the solubilization/reconstitution of integral membrane proteins by short-chain PC is the retention of the native protein structure and hence the protein function. Due to their special detergent-like properties, short-chain PC lend themselves very well not only to membrane solubilization but also to the purification of integral membrane proteins. The retention of the native protein structure in the solubilized state, i.e. in mixed micelles consisting of the integral membrane protein, intrinsic membrane lipids and short-chain PC, is rationalized. It is hypothesized that short-chain PC interacts primarily with the lipid bilayer of a membrane and very little if at all with the membrane proteins. In this way, the membrane protein remains associated with its preferred intrinsic membrane lipids and retains its native structure and its function.  相似文献   

10.
The interactions of NaCl and CaCl2 with the sea urchin embryo coat protein hyalin were investigated. Endogenous protein tryptophan fluorescence was enhanced by almost 45% in the presence of 200mM NaCl while 1mM CaCl2 reversed this effect and brought the intensity of fluorescence back close to that of the native protein. Half-maximal concentrations of 53 and 0.32mM were determined for NaCl and Ca+2, respectively. Hyalin conformation, as measured by circular dichroic spectroscopy, was altered by NaCl and CaCl2 in a fashion parallel to the effects of these salts on tryptophan fluorescence. Sodium chloride disrupted hyalin secondary structure while CaCl2 affected the return of hyalin to its native conformation. The interactions of NaCl and CaCl2 with hyalin were not modulated by MgCl2. These results suggest a role for CaCl2 in stabilizing hyalin against the disruptive effects of the high concentration of NaCl present in sea water.  相似文献   

11.
Bacteriorhodopsin (bR) is characterized by a retinal-protein protonated Schiff base covalent bond, which is stable for light absorption. We have revealed a light-induced protonated Schiff base hydrolysis reaction in a 13-cis locked bR pigment (bR5.13; lambda(max) = 550 nm) in which isomerization around the critical C13==C14 double bond is prevented by a rigid ring structure. The photohydrolysis reaction takes place without isomerization around any of the double bonds along the polyene chain and is indicative of protein conformational alterations probably due to light-induced polarization of the retinal chromophore. Two photointermediates are formed during the hydrolysis reaction, H450 (lambda(max) = 450 nm) and H430 (lambda(max) = 430 nm), which are characterized by a 13-cis configuration as analyzed by high-performance liquid chromatography. Upon blue light irradiation after the hydrolysis reaction, these intermediates rebind to the apomembrane to reform bR5.13. Irradiation of the H450 intermediate forms the original pigment, whereas irradiation of H430 at neutral pH results in a red shifted species (P580), which thermally decays back to bR5.13. Electron paramagnetic resonance (EPR) spectroscopy indicates that the cytoplasmic side of bR5.13 resembles the conformation of the N photointermediate of native bR. Furthermore, using osmotically active solutes, we have observed that the hydrolysis rate is dependent on water activity on the cytoplasmic side. Finally, we suggest that the hydrolysis reaction proceeds via the reversed pathway of the binding process and allows trapping a new intermediate, which is not accumulated in the binding process.  相似文献   

12.
In the recently published x-ray crystal structure of the "bicelle" bacteriorhodopsin (bbR) crystal, the protein has quite a different structure from the native and the in cubo bacteriorhodopsin (cbR) crystal. Instead of packing in parallel trimers as do the native membrane and the cbR crystals, in the bbR crystal the protein packs as antiparallel monomers. To date, no functional studies have been performed, to our knowledge, to investigate if the photocycle is observed in this novel protein packing structure. In this study, both Raman and time-resolved transient absorption spectroscopy are used to both confirm the presence of the photocycle and investigate the deprotonation-reprotonation kinetics of the Schiff base proton in the bbR crystal. The observed rates of deprotonation and reprotonation processes of its Schiff base have been compared to those observed for native bR under the same conditions. Unlike the previously observed similarity of the rates of these processes for cbR crystals and those for native bacteriorhodopsin (bR), in bbR crystals the rate of deprotonation has increased by 300%, and the rate of reprotonation has decreased by nearly 700%. These results are discussed in light of the changes observed when native bR is delipidated or monomerized by detergents. Both the change of the hydrophobicity of the environment around the protonated Schiff base and Asp85 and Asp96 (which could change the pKa values of proton donor-acceptor pairs) and the water structure in the bbR crystal are offered as possible explanations for the different observations.  相似文献   

13.
Photosystem II (PSII) is the plant photosynthetic reaction center that carries out the light driven oxidation of water. The water splitting reactions are catalyzed at a tetranuclear manganese cluster. The manganese stabilizing protein (MSP) of PSII stabilizes the manganese cluster and accelerates the rate of oxygen evolution. MSP can be removed from PSII, with an accompanying decrease in activity. Either an Escherichia coli expressed version of MSP or native, plant MSP can be rebound to the PSII reaction center; MSP reconstitution reverses the deleterious effects associated with MSP removal. We have employed Fourier transform infrared (FTIR) spectroscopy and solution small angle x-ray scattering (SAXS) techniques to investigate the structure of MSP in solution and to define the structural changes that occur before and after reconstitution to PSII. FTIR and SAXS are complementary, because FTIR spectroscopy detects changes in MSP secondary structure and SAXS detects changes in MSP size/shape. From the SAXS data, we conclude that the size/shape and domain structure of MSP do not change when MSP binds to PSII. From FTIR data acquired before and after reconstitution, we conclude that the reconstitution-induced increase in beta-sheet content, which was previously reported, persists after MSP is removed from the PSII reaction center. However, the secondary structural change in MSP is metastable after removal from PSII, which indicates that this form of MSP is not the lowest energy conformation in solution.  相似文献   

14.
The adsorption of bovine hemoglobin (BHb) onto colloidal spherical polyelectrolyte brushes (SPBs) is studied by a combination of small-angle X-ray scattering (SAXS) and Fourier transform infrared spectroscopy (FTIR). The SPBs consist of a polystyrene core onto which long chains of poly(styrene sulfonic acid) are grafted. Hemoglobin is a tetrameric protein that disassembles at low pH's and high ionic strengths. The protein is embedded into the brush layer composed of strong polyacids. Thus, the protein is subjected to a pH and ionic strength that largely differs from the bulk solution. At low ionic strengths up to 650 mg of BHb per gram of SPB could be immobilized. The analysis of the particles loaded with protein by SAXS demonstrates that the protein enters deeply into the brush. A large fraction of hemoglobin is bound at the surface of the polystyrene core. We attribute this strong affinity to hydrophobic interactions between the protein and the polystyrene core. The other protein molecules are closely correlated with the polyelectrolyte chains. The secondary structure of the protein within the brush was studied by FTIR spectroscopy. The analysis revealed a significant disturbance of the secondary structure of the tetrameric protein. The content of alpha-helix is significantly lowered compared to the native conformation. Moreover, there is an increase of beta-sheet structure as compared to the native conformation. The partial loss of the structural integrity of the hydrophobic protein is due to hydrophobic interactions with the hydrophobic polystyrene core. Hydrophobic interactions with the phenyl groups of the poly(styrene sulfonate) chains influence the secondary structure as well. These findings indicate that changes of the secondary structure play a role in the uptake of hemoglobin into the poly(styrene sulfonate) brushes.  相似文献   

15.
Eliash T  Ottolenghi M  Sheves M 《FEBS letters》1999,447(2-3):307-310
An outstanding problem relating to the structure and function of bacteriorhodopsin (bR), which is the only protein in the purple membrane of the photosynthetic microorganism Halobacterium salinarium, is the relation between the titration of Asp-85 and the binding/unbinding of metal cations. An extensively accepted working hypothesis has been that the two titrations are coupled, namely, protonation of Asp-85 (located in the vicinity of the retinal chromophore) and cation unbinding occur concurrently. We have carried out a series of experiments in which the purple blue equilibrium and the binding of Mn2+ ions (monitored by electron spin resonance) were followed as a function of pH for several (1-4) R = [Mn2+]/[bR] molar ratios. Data were obtained for native bR, bR mutants, artificial bR and chemically modified bR. We find that in the native pigment the two titrations are separated by more than a pKa unit [delta pKa = pKa(P/B)-pKa(Mn2+) = (4.2-2.8) = 1.4]. In the non-native systems, delta pKa values as high as 5 units, as well as negative delta pKas, are observed. We conclude that the pH titration of cation binding residues in bR is not directly related to the titration of Asp-85. This conclusion is relevant to the nature of the high affinity cation sites in bR and to their role in the photosynthetic function of the pigment.  相似文献   

16.
Molecular dynamics simulations, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy have been performed on a mutant of the Scapharca inaequivalvis homodimeric hemoglobin, where residue threonine 72, at the subunit interface, has been substituted by isoleucine. Molecular dynamics simulation indicates that in the Thr-72-->Ile mutant several residues that have been shown to play a role in ligand binding fluctuate around orientations and distances similar to those observed in the x-ray structure of the CO derivative of the native hemoglobin, although the overall structure remains in the T state. Visible absorption spectroscopy data indicate that in the deoxy form the Soret band is less asymmetric in the mutant than in the native protein, suggesting a more planar heme structure; moreover, these data suggest a similar heme-solvent interaction in both the liganded and unliganded states of the mutant protein, at variance with that observed in the native protein. The "conformation sensitive" band III of the deoxy mutant protein is shifted to lower energy by >100 cm-1 with respect to the native one, about one-half of that observed in the low temperature photoproducts of both proteins, indicating a less polar or more hydrophobic heme environment. Resonance Raman spectroscopy data show a slight shift of the iron-proximal histidine stretching mode of the deoxy mutant toward lower frequency with respect to the native protein, which can be interpreted in terms of either a change in packing of the phenyl ring of Phe-97, as also observed from the simulation, or a loss of water in the heme pocket. In line with this latter interpretation, the number of water molecules that dynamically enters the intersubunit interface, as calculated by the molecular dynamics simulation, is lower in the mutant than in the native protein. The 10-ns photoproduct for the carbonmonoxy mutant derivative has a higher iron-proximal histidine stretching frequency than does the native protein. This suggests a subnanosecond relaxation that is slowed in the mutant, consistent with a stabilization of the R structure. Taken together, the molecular dynamics and the spectroscopic data indicate that the higher oxygen affinity displayed by the Thr-72-->Ile mutant is mainly due to a local perturbation in the dimer interface that propagates to the heme region, perturbing the polarity of the heme environment and propionate interactions. These changes are consistent with a destabilization of the T state and a stabilization of the R state in the mutant relative to the native protein.  相似文献   

17.
The effects of aqueous ethanol or 2,2,2-trifluoroethanol media on the structure of sperm whale myoglobin have been investigated by absorption, CD, and NMR spectra. The structural properties of myoglobin such as heme environments, helix contents, protein folding, and interactions between heme and the protein moiety have been sharply manifested in these spectra. The characterization demonstrated that alcohol-induced conformational change of myoglobin depends on the nature of alcohol and its concentration. It was shown for the first time that, upon the alcohol-induced denaturation of myoglobin, heme is released from partially denatured protein of which helix contents is altered by only about 20% relative to that of native state. Myoglobin has shown to unfold and refold reversibly by controlling the alcohol concentration. Novel methods for the preparation of apomyoglobin and in situ reconstitution of apomyoglobin with heme, based on the alcohol-induced denaturation of the protein, were presented.  相似文献   

18.
The Rieske 2Fe-2S protein is a central component of the photosynthetic electron transport cytochrome b6f complex in chloroplast and cyanobacterial thylakoid membranes. We have constructed plasmids for expression in Escherichia coli of full-length and truncated Spinacia oleracea Rieske (PetC) proteins fused to the MalE, maltose binding protein. The expressed Rieske fusion proteins were found predominantly in soluble form in the E. coli cytoplasm. These proteins could be readily purified for further experimentation. In vitro reconstitution of the characteristic, "Rieske-type" 2Fe-2S cluster into these fused proteins was accomplished by a chemical method employing reduced iron and sulfide. Cluster incorporation was monitored by electron paramagnetic resonance and optical circular dichroism (CD) spectroscopy. CD spectral analysis in the ultraviolet region suggests that the spinach Rieske apoprotein must be in a partially folded conformation to incorporate an appropriate iron-sulfur cluster. These data further suggest that upon cluster integration, further folding occurs, allowing the Rieske protein to attain a final, native structure. The data presented here are the first to demonstrate successful chemical reconstitution of the 2Fe-2S cluster into a Rieske apoprotein from higher plant chloroplasts.  相似文献   

19.
Friedman N  Ottolenghi M  Sheves M 《Biochemistry》2003,42(38):11281-11288
The special trimeric structure of bacteriorhodopsin (bR) in the purple membrane of Halobacterium salinarum, and especially, the still controversial question as to whether the three protein components are structurally and functionally identical, have been subject to considerable work. In the present work, the problem is approached by studying the reconstitution reaction of the bR apo-protein with all-trans retinal, paying special attention to the effects of the apo-protein/retinal (P:R) ratio. The basic observation is that at high P:R values, the reconstitution reaction proceeds via two distinct, fast and slow, pathways associated with two different pre-pigment precursors absorbing at 430 nm (P(430)) and 400 nm (P(400)), respectively. These two reactions, exhibiting 2:1 (P(430)/P(400)) amplitude ratios, are markedly affected by the P:R value. The principal feature is the acceleration of the P(400) --> bR transition at low P:R ratios. The data are interpreted in terms of a scheme in which the added retinal first occupies two protein retinal traps, R(1) and R(2), from which it is transferred to two spectroscopically distinct binding sites corresponding to the two pre-pigments, P(430) and P(400), respectively. Two noncovalently bound retinal molecules occupy two P(430) sites of the bR trimer, while one (P(400)) occupies the third. Binding is completed by generating the retinal-protein covalent bond. Analogous experiments were also carried out with an aromatic bR chromophore and with the D85N bR mutant. The accumulated data clearly point out the heterogeneity of the binding reaction intermediates, in which two are clearly distinct from the third. However, CD spectroscopy strongly suggests that even the two P(430) sites are not structurally identical. The heterogeneity of the P intermediates in the binding reaction can be accounted for, either by being induced by cooperativity or by an intrinsic heterogeneity that is already present in the apoprotein. The question as to whether the final reconstituted pigment, as well as native bR, are nonhomogeneous should be the subject of future studies.  相似文献   

20.
The solution conformation of two peptides [1: PSGSNIISNLFKED; 2: GSSTLTALTTSVLKNNL] from human CD81 (hCD81) large extra-cellular loop (LEL) with known importance in the hepatitis C virus glycoprotein E2 (HCV-E2) binding interaction was characterized using circular dichroism spectroscopy. In addition, the solution structure of peptide 1 that contains a phenylalanine residue (F186 in hCD81) known to be critical in the binding interaction with HCV-E2 was determined using 1D and 2D 1H NMR spectroscopy. Both peptides are unstructured in water but begin forming significant helical conformation following the addition of 20% or more trifluoroethanol (v/v), a result consistent with their alpha-helical conformation found in the native protein. The CD data recorded as a function of pH and NaCl concentration are consistent with stabilization of the helical structure from electrostatic forces for both peptides. Peptide 1 is able to block the binding interaction of recombinant HCV-E2 (rHCV-E2) to hCD81 expressed on Molt-4 T cells at high concentrations (3.5 mM), a low affinity that we attributed to the random coil structure in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号