首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li Zhang  Jan Hermans 《Proteins》1993,16(4):384-392
This paper employs methods used earlier to study helix propensity in a model α-helix. The methods are extended to simulations of a motif structure of the α-helical coiled coil, i.e., a structure with a simple amino acid sequence, containing only alanine, leucine, and valine, with leucine and valine forming hydrophobic contacts in the helix interface (positions “d” and “a”). Dynamic simulations of the model coiled-coil structure reproduce characteristic features of the coiled-coil motif seen in experimental studies. Free energy simulations were used to assess the change in stability of the model when a leucine pair or a valine pair in the helix interface was replaced with an alanine pair. A leucine pair at position d was found to contribute 3.4 kcal/mol to the stability of the coiled coil relative to an alanine pair, and a valine pair at postion a was found to contribute 0.8 kcal/mol relative to an alanine pair. The value for the leucine pair agrees with reports in two experimental studies with molecules having different amino sequence. The value for the valine pair is reasonable given the smaller size of the valine side chain and the intrinsic low helix propensity of valine. No experimental value was available for comparison. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Protein function is often controlled by ligand-induced conformational transitions. Yet, in spite of the increasing number of three-dimensional crystal structures of proteins in different conformations, not much is known about the driving forces of these transitions. As an initial step toward exploring the conformational and energetic landscape of protein kinases by computational methods, intramolecular energies and hydration free energies were calculated for different conformations of the catalytic domain of cAMP-dependent protein kinase (cAPK) with a continuum (Poisson) model for the electrostatics. Three protein kinase crystal structures for ternary complexes of cAPK with the peptide inhibitor PKI(5-24) and ATP or AMP-PNP were modeled into idealized intermediate and open conformations. Concordant with experimental observation, we find that the binding of PKI(5-24) is more effective in stabilizing the closed and intermediate forms of cAPK than ATP. PKI(5-24) seems to drive the final closure of the active site cleft from intermediate to closed state because ATP does not distinguish between these two states. Binding of PKI(5-24) and ATP is energetically additive.  相似文献   

3.
Nguyen PH  Mu Y  Stock G 《Proteins》2005,60(3):485-494
A replica exchange molecular dynamics (REMD) simulation of a bicyclic azobenzene peptide in explicit dimethyl sulfoxide solution is presented in order to characterize the conformational structures and energy landscape of a photoswitchable peptide. It is shown that an enhanced-sampling technique such as the REMD method is essential to obtain a converged conformational sampling of the peptide at room temperature. This is because conventional MD simulations of less than approximately 100-ns length are either trapped in local minima (at 295 K) or-if run at high temperature-do not resemble the room-temperature REMD results. Calculating various nuclear Overhauser effects (NOEs) and (3)J-couplings, a good overall agreement between the REMD simulations and the NMR experiments of Renner et al. (Biopolymers 2000;54:501-514) is found. In particular, the REMD study confirms the general picture drawn by Renner et al. that the trans-isomer of the azobenzene peptide exhibits a well-defined structure, while the cis-isomer is a conformational heterogeneous system; that is, the trans-isomer occurs in 2 well-defined conformers, while the cis-isomer represents an energetically frustrated system that leads to an ensemble of conformational structures. Employing a principal component analysis of the REMD data, the free energy landscape of the systems is studied at various temperatures. The implications for the folding and unfolding pathways of the system are discussed.  相似文献   

4.
Multiple molecular dynamics (MD) simulations of crambin with different initial atomic velocities are used to sample conformations in the vicinity of the native structure. Individual trajectories of length up to 5 ns sample only a fraction of the conformational distribution generated by ten independent 120 ps trajectories at 300 K. The backbone atom conformational space distribution is analyzed using principal components analysis (PCA). Four different major conformational regions are found. In general, a trajectory samples only one region and few transitions between the regions are observed. Consequently, the averages of structural and dynamic properties over the ten trajectories differ significantly from those obtained from individual trajectories. The nature of the conformational sampling has important consequences for the utilization of MD simulations for a wide range of problems, such as comparisons with X-ray or NMR data. The overall average structure is significantly closer to the X-ray structure than any of the individual trajectory average structures. The high frequency (less than 10 ps) atomic fluctuations from the ten trajectories tend to be similar, but the lower frequency (100 ps) motions are different. To improve conformational sampling in molecular dynamics simulations of proteins, as in nucleic acids, multiple trajectories with different initial conditions should be used rather than a single long trajectory.  相似文献   

5.
6.
Backbone 15N relaxation parameters (R1, R2, 1H-15N NOE) have been measured for a 22-residue recombinant variant of the S-peptide in its free and S-protein bound forms. NMR relaxation data were analyzed using the "model-free" approach (Lipari & Szabo, 1982). Order parameters obtained from "model-free" simulations were used to calculate 1H-15N bond vector entropies using a recently described method (Yang & Kay, 1996), in which the form of the probability density function for bond vector fluctuations is derived from a diffusion-in-a-cone motional model. The average change in 1H-15N bond vector entropies for residues T3-S15, which become ordered upon binding of the S-peptide to the S-protein, is -12.6+/-1.4 J/mol.residue.K. 15N relaxation data suggest a gradient of decreasing entropy values moving from the termini toward the center of the free peptide. The difference between the entropies of the terminal and central residues is about -12 J/mol residue K, a value comparable to that of the average entropy change per residue upon complex formation. Similar entropy gradients are evident in NMR relaxation studies of other denatured proteins. Taken together, these observations suggest denatured proteins may contain entropic contributions from non-local interactions. Consequently, calculations that model the entropy of a residue in a denatured protein as that of a residue in a di- or tri-peptide, might over-estimate the magnitude of entropy changes upon folding.  相似文献   

7.
Due to the increasing prevalence of diabetes, finding therapeutic analogues for insulin has become an urgent issue. While many experimental studies have been performed towards this end, they have limited scope to examine all aspects of the effect of a mutation. Computational studies can help to overcome these limitations, however, relatively few studies that focus on insulin analogues have been performed to date. Here, we present a comprehensive computational study of insulin analogues—three mutant insulins that have been identified with hyperinsulinemia and three mutations on the critical B26 residue that exhibit similar binding affinity to the insulin receptor—using molecular dynamics simulations with the aim of predicting how mutations of insulin affect its activity, dynamics, energetics and conformations. The time evolution of the conformers is studied in long simulations. The probability density function and potential of mean force calculations are performed on each insulin analogue to unravel the effect of mutations on the dynamics and energetics of insulin activation. Our conformational study can decrypt the key features and molecular mechanisms that are responsible for an enhanced or reduced activity of an insulin analogue. We find two key results: 1) hyperinsulinemia may be due to the drastically reduced activity (and binding affinity) of the mutant insulins. 2) Y26BS and Y26BE are promising therapeutic candidates for insulin as they are more active than WT-insulin. The analysis in this work can be readily applied to any set of mutations on insulin to guide development of more effective therapeutic analogues.  相似文献   

8.
Simulations of an RNA hairpin containing a GNRA tetraloop were conducted to allow the characterization of its secondary structure formation and dynamics. Ten 10 ns trajectories of the folded hairpin 5'-GGGC[GCAA]GCCU-3' were generated using stochastic dynamics and the GB/SA implicit solvent model at 300 K. Overall, we find the stem to be a very stable subunit of this molecule, whereas multiple loop conformations and transitions between them were observed. These trajectories strongly suggest that extension of the C6 base away from the loop occurs cooperatively with an N-type-->S-type sugar pucker conversion in that residue and that similar pucker transitions are necessary to stabilize other looped-out bases. In addition, a short-lived conformer with an extended fourth loop residue (A8) lacking this stabilizing 2'-endo pucker mode was observed. Results of thermal perturbation at 400 K support this model of loop dynamics. Unfolding trajectories were produced using this same methodology at temperatures of 500 to 700 K. The observed unfolding events display three-state behavior kinetically (including native, globular, and unfolded populations) and, based on these observations, we propose a folding mechanism that consists of three distinct events: (i) collapse of the random unfolded structure and sampling of the globular state; (ii) passage into the folded region of configurational space as stem base-pairs form and gain helicity; and (iii) attainment of proper loop geometry and organization of loop pairing and stacking interactions. These results are considered in the context of current experimental knowledge of this and similar nucleic acid hairpins.  相似文献   

9.
This study reports the building of the three-dimensional structure of the rat alpha1d-adrenergic receptor through a topology approach based on the structure of the rhodopsin receptor from cryoelectron microscopy. The validity and reliability of the receptor model were assessed through exhaustive molecular dynamics and docking studies. Some interesting ligand-receptor interactions were identified along with significant differences between the binding mode of agonists and antagonists. The importance of the disruption of a salt bridge as a possible initial event leading to receptor activation is discussed on the basis of data from mutagenesis and molecular dynamics studies.  相似文献   

10.
If the number of treatments in a network meta‐analysis is large, it may be possible and useful to model the main effect of treatment as random, that is to say as random realizations from a normal distribution of possible treatment effects. This then constitutes a third sort of random effect that may be considered in connection with such analyses. The first and most common models treatment‐by‐trial interaction as being random and the second, rather rarer, models the main effects of trial as being random and thus permits the recovery of intertrial information. Taking the example of a network meta‐analysis of 44 similar treatments in 10 trials, we illustrate how a hierarchical approach to modeling a random main effect of treatment can be used to produce shrunk (toward the overall mean) estimates of effects for individual treatments. As a related problem, we also consider the issue of using a random‐effect model for the within‐trial variances from trial to trial. We provide a number of possible graphical representations of the results and discuss the advantages and disadvantages of such an approach.  相似文献   

11.
The protein moiety of the Braun's E. coli outer membrane lipoprotein (Lpp-56) is an attractive object of biophysical investigation in several aspects. It is a homotrimeric, parallel coiled coil, a class of coiled coils whose stability and folding have been studied only occasionally. Lpp-56 possesses unique structural properties and exhibits extremely low rates of folding and unfolding. It is natural to ask how the specificity of the structure determines the extraordinary physical chemical properties of this protein. Recently, a seemingly controversial data on the stability and unfolding rate of Lpp-56 have been published (Dragan et al., Biochemistry 2004;43: 14891-14900; Bjelic et al., Biochemistry 2006;45:8931-8939). The unfolding rate constant measured using GdmCl as the denaturing agent, though extremely low, was substantially higher than that obtained on the basis of thermal unfolding. If this large difference arises from the effect of screening of electrostatic interactions induced by GdmCl, electrostatic interactions would appear to be an important factor determining the unusual properties of Lpp-56. We present here a computational analysis of the electrostatic properties of Lpp-56 combining molecular dynamics simulations and continuum pK calculations. The pH-dependence of the unfolding free energy is predicted in good agreement with the experimental data: the change in DeltaG between pH 3 and pH 7 is approximately 60 kJ mol(-1). The results suggest that the difference in the stability of the protein observed using different experimental methods is mainly because of the effect of the reduction of electrostatic interactions when the salt (GdmCl) concentration increases. We also find that the occupancy of the interhelical salt bridges is unusually high. We hypothesize that electrostatic interactions, and the interhelical salt bridges in particular, are an important factor determining the low unfolding rate of Lpp-56.  相似文献   

12.
Rennebaum S  Caflisch A 《Proteins》2012,80(8):1998-2008
As part of the cytoskeleton, actin is essential for the morphology, motility, and division of eukaryotic cells. Recent X-ray fiber diffraction studies have shown that the conformation of monomeric actin is flattened upon incorporation into the filament by a relative rotation of its two major domains. The antiproliferative activity of latrunculin, a macrolide toxin produced by sponges, seems to be related to its binding to monomeric actin and inhibition of polymerization. Yet, the mechanism of inhibition is not known in detail. Here, multiple explicit water molecular dynamics simulations show that latrunculin binding hinders the conformational transition related to actin polymerization. In particular, the presence of latrunculin at the interface of the two major domains of monomeric actin reduces the correlated displacement of Domain 2 with respect to Domain 1. Moreover, higher rotational flexibility between the two major domains is observed in the absence of ATP as compared to ATP-bound actin, offering a possible explanation as to why actin polymerizes more favorably in the absence of nucleotides.  相似文献   

13.
The N-terminal large fragments of staphylococcal nuclease (SNase), SNase110 (1-110 residues), SNase121 (1-121 residues), and SNase135 (1-135 residues), and the fragment mutants G88W110, G88W121, V66W110 and V66W121 were studied by heteronuclear multidimensional NMR spectroscopy. Ensembles of co-existent native-like partially folded and unfolded states were observed for fragments. The persistent native-like tertiary interaction drives fragments to be in partially folded states, which reveal native-like beta-barrel conformations. G88W and V66W mutations modulate the extent of inherent native-like tertiary interaction in fragment molecules, and in consequence, fragment mutants fold into native-like beta-subdomain conformations. In cooperation with the inherent tertiary interaction, 2 M TMAO (trimethylamine N-oxide) can promote the folding reaction of fragments through the changes of unfolding free energy, and a native-like beta-subdomain conformation is observed when the chain length contains 135 residues. Heterogeneous partially folded conformations of 1-121 and 1-135 fragments due to cis and trans X-prolyl bond of Lys116-Pro117 make a non-unique folding pathway of fragments. The folding reaction of fragments can be characterized as a hierarchical process.  相似文献   

14.
Cancer-associated mutations in the BRCT domain of BRCA1 (BRCA1-BRCT) abolish its tumor suppressor function by disrupting interactions with other proteins such as BACH1. Many cancer-related mutations do not cause sufficient destabilization to lead to global unfolding under physiological conditions, and thus abrogation of function probably is due to localized structural changes. To explore the reasons for mutation-induced loss of function, the authors performed molecular dynamics simulations on three cancer-associated mutants, A1708E, M1775R, and Y1853ter, and on the wild type and benign M1652I mutant, and compared the structures and fluctuations. Only the cancer-associated mutants exhibited significant backbone structure differences from the wild-type crystal structure in BACH1-binding regions, some of which are far from the mutation sites. Backbone differences of the A1708E mutant from the liganded wild type structure in these regions are much larger than those of the unliganded wild type X-ray or molecular dynamics structures. These BACH1-binding regions of the cancer-associated mutants also exhibited increases in their fluctuation magnitudes compared with the same regions in the wild type and M1562I mutant, as quantified by quasiharmonic analysis. Several of the regions of increased fluctuation magnitude correspond to correlated motions of residues in contact that provide a continuous path of fluctuating amino acids in contact from the A1708E and Y1853ter mutation sites to the BACH1-binding sites with altered structure and dynamics. The increased fluctuations in the disease-related mutants suggest an increase in vibrational entropy in the unliganded state that could result in a larger entropy loss in the disease-related mutants upon binding BACH1 than in the wild type. To investigate this possibility, vibrational entropies of the A1708E and wild type in the free state and bound to a BACH1-derived phosphopeptide were calculated using quasiharmonic analysis, to determine the binding entropy difference DeltaDeltaS between the A1708E mutant and the wild type. DeltaDeltaS was determined to be -4.0 cal mol(-1) K(-1), with an uncertainty of 2 cal mol(-1) K(-1); that is, the entropy loss upon binding the peptide is 4.0 cal mol(-1) K(-1) greater for the A1708E mutant, corresponding to an entropic contribution to the DeltaDeltaG of binding (-TDeltaDeltaS) 1.1 kcal mol(-1) more positive for the mutant. The observed differences in structure, flexibility, and entropy of binding likely are responsible for abolition of BACH1 binding, and illustrate that many disease- related mutations could have very long-range effects. The methods described here have potential for identifying correlated motions responsible for other long-range effects of deleterious mutations.  相似文献   

15.
Fitzkee NC  Fleming PJ  Rose GD 《Proteins》2005,58(4):852-854
Approximately half the structure of folded proteins is either alpha-helix or beta-strand. We have developed a convenient repository of all remaining structure after these two regular secondary structure elements are removed. The Protein Coil Library (http://roselab.jhu.edu/coil/) allows rapid and comprehensive access to non-alpha-helix and non-beta-strand fragments contained in the Protein Data Bank (PDB). The library contains both sequence and structure information together with calculated torsion angles for both the backbone and side chains. Several search options are implemented, including a query function that uses output from popular PDB-culling servers directly. Additionally, several popular searches are stored and updated for immediate access. The library is a useful tool for exploring conformational propensities, turn motifs, and a recent model of the unfolded state.  相似文献   

16.
17.
Gotsev MG  Ivanov PM  Jaime C 《Chirality》2007,19(3):203-213
Molecular dynamics simulations in water solution were performed on six large-ring cyclodextrins (LR-CDs) with a degree of polymerization 24, 25, 26, 27, 28, and 29. The AMBER parm99 force field and explicit water molecules (TIP3P) were used in the simulations. The present research was aimed at further extending our knowledge on the structural dynamics and the energetics of this new class of compounds that may eventually provide chiral cavities suitable for formation of inclusion complexes with small molecules, and, accordingly, to serve as host structures for chiral recognition. The study focused on several representatives flanking CD26-the largest LR-CD for which X-ray data is available. Both the monitoring of the structural variations during the simulations as well as the analyses of energy balances are indicative for high flexibility of the macrorings. Slight differences of the overall preferred shapes were detected with diminishing the size of the macromolecules from CD29 to CD24. An elongated cavity (CD28) or a double parallel strand in different specific representations are the dominating motifs in the LR-CDs studied: with loops at the two ends (CD25, CD28, CD29), with a loop at one end (CD25), twisted (CD26, CD27) or twisted with an open portion in the middle (CD24), helical (CD24, CD25), or linking two loops from one of their sides (CD27). Two loops connected by an arc (CD28, CD29) and a cavity with the shape of an extended rectangular (CD24, CD28) appear preferentially during the conformational interconversions of the two larger CDs, whereas helical motifs are present in the smaller macrorings: an extended helix with ends linked by an arc (CD24), helical turn and helical portion (CD26, CD27). A triple propeller conformation or three symmetrical loops of almost equal size were also detected for CD26 and CD29, respectively. The present results further support the hypothesis for the existence of more than one cavity in large-ring cyclodextrins and suggest preferred conformations in water solution for the LR-CDs with degree of polymerization from 24 to 29.  相似文献   

18.
A series of three-dimensional structures of the 1-29 fragment of human growth hormone releasing factor in trifluoroethanol have been determined by molecular dynamics and distance geometry methods. The resulting structures satisfy information from nuclear Overhauser effect (NOE) distance data and an empirical potential energy function. Although the polypeptide was found to have an ordered structure in all simulations, the NOE data were not sufficient for global convergence to a unique three-dimensional geometry. Several satisfactory structures have been determined, all of which are extended conformations consisting of a short beta-strand and two alpha-helices (residues 6-13 and residues 16-29) connected by short segments of less well defined secondary structure. Because of the lack of NOE data connecting the helix segments, their relative orientation is not uniquely determined.  相似文献   

19.
Caenhorhabditis elegans Unc104 kinesin transports synaptic vesicles at rapid velocities. Unc104 is primarily monomeric in solution, but recent motility studies suggest that it may dimerize when concentrated on membranes. Using cryo-electron microscopy, we observe two conformations of microtubule-bound Unc104: a monomeric state in which the two neck helices form an intramolecular, parallel coiled coil; and a dimeric state in which the neck helices form an intermolecular coiled coil. The intramolecular folded conformation is abolished by deletion of a flexible hinge separating the neck helices, indicating that it acts as a spacer to accommodate the parallel coiled-coil configuration. The neck hinge deletion mutation does not alter motor velocity in vitro but produces a severe uncoordinated phenotype in transgenic C. elegans, suggesting that the folded conformation plays an important role in motor regulation. We suggest that the Unc104 neck regulates motility by switching from a self-folded, repressed state to a dimerized conformation that can support fast processive movement.  相似文献   

20.
The conformation of a [15]-peptide (H-VKAETRLNPDLQPTE-NH2) from VP2 of rhinovirus HRV2 complexed with a Fab fragment was previously shown by X-ray crystallographic studies to be similar to the one found in the corresponding region of HRV1A. Antibodies raised against this peptide bind to and neutralize HRV2. In order to identify structural features preserved in solution that may explain the ability of this short peptide to mimic the structure of the protein surface, the peptide has been studied by NMR in aqueous solution as well as under denaturing conditions. The peptide is shown to be a random coil in solution. However, the sequence forming a 310 helix in the complex is biased into a helical conformation according to NOE intensity data as well as from urea and pH titrations. This sequence adopts the same conformation in an unrelated protein. NOE data suggest that a β-turn found in the complex may be sampled in solution. Also, Glu4, interacting with Arg6 in the crystal, has a reduced pKa value in solution. It is concluded that the local structure present in the random coil state of VP2(156–170) contains enough information to direct the production of antibodies that bind to and neutralize HRV2. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号