首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Studies on poly(L-lysine50, L-tyrosine50)-DNA interaction   总被引:3,自引:0,他引:3  
R M Santella  H J Li 《Biopolymers》1974,13(9):1909-1926
Interaction between poly(Lys50, Tyr50) and DNA has been studied by absorption, circular dichroism (CD), and fluorescence spectroscopy and thermal denaturation in 0.001M Tris, pH 6.8. The binding of this copolypeptide to DNA results in an absorbance enhancement and fluorescence quenching on tyrosine. There is also an increase in the tyrosine CD at 230 nm. The CD of DNA above 250 nm is slightly shifted to the longer wavelength which is qualitatively similar to, but quantitatively much smaller than, that induced by polylysine binding. At physiological pH the poly(Lys50, Tyr50)–DNA complex is soluble until there is one lysine and one tyrosine per nucleotide in the complex. The same ratio of amino acid residues to nucleotide has also been observed in copolypeptide-bound regions of the complex. The addition of more poly(Lys50, Tyr50) to DNA yields a constant melting temperature, Tm′, for bound base pairs at 90°C which is close to that of polylysine-bound DNA under the same condition. The melting temperature, Tm, of free base pairs at about 60°C on the other hand, is increased by 10°C as more copolypeptide is bound to DNA. As the temperature is raised, both absorption and CD spectra of the complexes with high coverage are changed, suggesting structural alteration, perhaps deprotonation, on bound tyrosine. The results in this report also suggest that intercalation of tyrosine in DNA is unlikely to be the mode of binding.  相似文献   

2.
Many factors that change the temperature position and interval of the DNA helix–coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable “jagged” Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na+], and GC content. At the same time, Tm determined as the helix–coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na+], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix–coil transition enthalpy/entropy ratio).  相似文献   

3.
The interaction of a series of mixed ligand complexes of the type [Ru(NH3)4(diimine)]Cl2, where diimine=2,2-bipyridine (bipy), 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), 4,7-dimethyl-1,10-phenanthroline (4,7-dmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp), 3,4,7,8-tetra-methyl-1,10-phenanthroline (Me4phen), with calf thymus DNA has been studied using absorption, emission and circular dichroic spectral measurements and viscometry and electrochemical techniques. On interaction with DNA the complexes show hypochromism and red-shift in their MLCT band suggesting that the complexes bind to DNA. The magnitude of the binding constant (Kb) obtained from absorption spectral titration varies depending upon the nature of the diimine ligand: Me4phen > 5,6-dmp > 4,7-dmp > phen suggesting the use of diimine ‘face’ of the octahedral complexes in binding to DNA. The interaction of phen complex possibly involves phen ring partially inserted into the DNA base pairs. In contrast, the methyl-substituted phen complexes would involve hydrophobic interaction of the phen ring in the grooves of DNA, which is supported by hydrogen bonding interactions of the ammonia ligands with the intrastrand nucleobases. Also the shape and size of the phen ligand as modified by the methyl substituents determine the DNA binding site sizes (0.12-0.45 base pairs). The relative emission intensities (I/I0) of the DNA-bound complexes parallel the variation in Kb values. Almost all the metal complexes exhibit induced CD bands on binding to B DNA, with the 4,7-dmp and Me4phen complexes inducing certain structural modifications on the biopolymer. DNA melting curves obtained in the presence of metal complexes reveal a monophasic melting of the DNA strands, the Me4phen complex exhibiting a slightly enhanced tendency to stabilize the double-stranded DNA. There were slight to appreciable changes in the relative viscosities of DNA, which are consistent with enhanced hydrophobic interaction of the methyl-substituted phen rings. Upon interaction with CT DNA, the Me4phen, 4,7-dmp and 5,6-dmp complexes, in contrast to bipy, phen and 2,9-dmp complexes, show a decrease in anodic peak current in their cyclic voltammograms suggesting that they exhibit enhanced DNA binding. DNA cleavage experiments show that all the complexes induce cleavage of pBR322 plasmid DNA, the Me4phen and 5,6-dmp complexes being remarkably more efficient than other complexes.  相似文献   

4.
H J Li  B Brand  A Rotter  C Chang  M Weiskopf 《Biopolymers》1974,13(8):1681-1697
Thermal denaturation of direct-mixed and reconstituted polylysine–DNA complexes in 2.5 × 10?4 M EDTA, pH 8.0 and various concentrations of NaCl has been studied. For both complexes, increasing ionic strength of the solution raises Tm, the melting temperature of free base pairs. The linear dependence of Tm on log Na+ indicates that the concept of electrostatic shielding on phosphate lattice of an infinitely long pure DNA by Na+ can be applied to short free DNA segments in a nucleoprotein. For a direct-mixed polylysine–DNA complex, the melting temperature of bound base pairs Tm′ remains constant at various ionic strengths. On the other hand, the Tm′ in a reconstituted polylysine–DNA complex is shifted to lower temperature at higher ionic strength. This phenomenon occurs for reconstituted complex with long polylysine of one thousand residues or short polylysine of one hundred residues. It is shown that such a decrease of Tm′ is not due to a reduction of coupling melting between free and bound regions in a complex when the ionic strength is raised. It is also not due to intermolecular or intramolecular change from a reconstituted to a direct-mixed complex. It is suggested that this phenomenon is due to structural change on polylysine-bound regions by ionic strength. It is suggested further that Na+ may replace water molecules and bind polylysine-bound regions in a reconstituted complex. Such a dehydration effect destabilizes these regions and lowers Tm′. This explanation is supported by circular dichroism (CD) results.  相似文献   

5.
Abstract

Thermodynamic parameters of melting process (δHm, Tm, δTm) of calf thymus DNA, poly(dA)poly(dT) and poly(d(A-C))·poly(d(G-T)) were determined in the presence of various concentrations of TOEPyP(4) and its Zn complex. The investigated porphyrins caused serious stabilization of calf thymus DNA and poly poly(dA)poly(dT), but not poly(d(A-C))poly(d(G-T)). It was shown that TOEpyp(4) revealed GC specificity, it increased Tm of satellite fraction by 24°C, but ZnTOEpyp(4), on the contrary, predominately bound with AT-rich sites and increased DNA main stage Tm by 18°C, and Tm of poly(dA)poly(dT) increased by 40 °C, in comparison with the same polymers without porphyrin. ZnTOEpyp(4) binds with DNA and poly(dA)poly(dT) in two modes—strong and weak ones. In the range of r from 0.005 to 0.08 both modes were fulfilled, and in the range of r from 0.165 to 0.25 only one mode—strong binding—took place. The weak binding is characterized with shifting of Tm by some grades, and for the strong binding Tm shifts by ~ 30–40°C. Invariability of ΔHm of DNA and poly(dA)poly(dT), and sharp increase of Tm in the range of r from 0.08 to 0.25 for thymus DNA and 0.01–0.2 for poly(dA)poly(dT) we interpret as entropic character of these complexes melting. It was suggested that this entropic character of melting is connected with forcing out of H2O molecules from AT sites by ZnTOEpyp(4) and with formation of outside stacking at the sites of binding. Four-fold decrease of calf thymus DNA melting range width ΔTm caused by increase of added ZnTO- Epyp(4) concentration is explained by rapprochement of AT and GC pairs thermal stability, and it is in agreement with a well-known dependence, according to which ΔT~TGC-TAT for DNA obtained from higher organisms (L. V. Berestetskaya, M. D. Frank-Kamenetskii, and Yu. S. Lazurkin. Biopolymers 13, 193–205 (1974)). Poly (d(A-C))poly(d(G-T)) in the presence of ZnTOEpyp(4) gives only one mode of weak binding. The conclusion is that binding of ZnTOEpyp(4) with DNA depends on its nucleotide sequence.  相似文献   

6.
Thermal denaturation and circular dichroism (CD) properties of poly(L -lysine)–DNA complexes vary greatly when these complexes are prepared differently, that is, whether by NaCl-gradient dialysis starting from 2.0 M NaCl or by direct mixing at low salt. These differing properties were investigated in more detail by examining complexes, made by direct mixing in the presence of various concentrations of NaCl, both before and after the NaCl was dialyzed out of the complex solution. The precipitation curves of DNA due to polylysine binding indicate that such binding is noncooperative at zero salt; from 0.1 up to 1.0 M NaCl they exhibit varying degrees of cooperatively. Starting from zero salt, as the NaCl concentration used for complex formation is increased, both the CD and the melting properties of the complexes are shifted from those of directly mixed at zero salt to those of reconstitution: in the CD spectra there is a gradual shift from a B → C transition to a B → ψ transition; thermal denaturation results show a gradual increase in the melting temperatures of both free DNA (tm) and polylysine-bound DNA (tm). The progressive shift from B → C to B → ψ suggests a close relationship between these two transitions. Large aggregates of the complexes do not warrant the appearance of ψ-type CD spectra: ψ-spectra have been obtained in the supernatants of polylysine–DNA complexes made and measured at 1.0 M NaCl while slightly perturbed CD spectra in B → C transition have been observed in turbid solutions of fully covered complexes made at very low salt. If the complexes are made at intermediate salts and dialyzed to a very low salt, although up to 60% of the DNA is still bound by polylysine, the CD spectra of the complexes are shifted back to the B-type CD characteristic of pure DNA.  相似文献   

7.
Human genome is shown to be enriched with (GT)n stretches of lengths from 8 to 20 dinucleotides. Low temperature (T ≤ 10 °C) conformations of d(GT)n oligonucleotides (n = 7, 8, 12, 16, 20) were studied by means of circular dichroism (CD), thermal melting, ethidium bromide (EtBr) probing and single nucleotide substitutions. Rotational relaxation times for EtBr:d(GT)n complexes confirmed a monomolecular state of the oligonucleotides. CD spectra indicated involvement of all guanines of d(GT)8 and d(GT)16 in G-quartets, while dT(GT)7, d(GT)12 and d(GT)20 were shown to be only partially ordered. The schemes of the d(GT)8 and d(GT)16 folds are suggested.  相似文献   

8.
A generic hexadeoxyribonucleotide microchip has been applied to test the DNA-binding properties of HU histone-like bacterial protein, which is known to have a low sequence specificity. All 4096 hexamers flanked within 8mers by degenerate bases at both the 3′- and 5′-ends were immobilized within the 100 × 100 × 20 mm polyacrylamide gel pads of the microchip. Single-stranded immobilized oligonucleotides were converted in some experiments to the double-stranded form by hybridization with a specified mixture of 8mers. The DNA interaction with HU was characterized by three type of measurements: (i) binding of FITC-labeled HU to microchip oligonucleotides; (ii) melting curves of complexes of labeled HU with single-stranded microchip oligonucleotides; (iii) the effect of HU binding on melting curves of microchip double-stranded DNA labeled with another fluorescent dye, Texas Red. Large numbers of measurements of these parameters were carried out in parallel for all or many generic microchip elements in real time with a multi-wavelength fluorescence microscope. Statistical analysis of these data suggests some preference for HU binding to G/C-rich single-stranded oligonucleotides. HU complexes with double-stranded microchip 8mers can be divided into two groups in which HU binding either increased the melting temperature (Tm) of duplexes or decreased it. The stabilized duplexes showed some preference for presence of the sequence motifs AAG, AGA and AAGA. In the second type of complex, enriched with A/T base pairs, the destabilization effect was higher for longer stretches of A/T duplexes. Binding of HU to labeled duplexes in the second type of complex caused some decrease in fluorescence. This decrease also correlates with the higher A/T content and lower Tm. The results demonstrate that generic microchips could be an efficient approach in analysis of sequence specificity of proteins.  相似文献   

9.
In this work, the interaction between the guanine-rich single-strand oligomer AG3(T2AG3)3 quadruplex and two Ru(II) complexes, [Ru(L1)(dppz)2](PF6)4 (1) and [Ru(L2)(dppz)2](PF6)4 (2) (L1 = 5,5′-di(1-(trimethylammonio)methyl)-2,2′-dipyridyl cation, L2 = 5,5′-di(1-(triethylammonio)methyl)-2,2′-dipyridyl cation, dppz = dipyrido[3,2-a:2′,3′-c] phenazine), has been studied by UV-Visible, fluorescence, DNA melting, and circular dichroism in K+ buffer. The two complexes after binding to G-quadruplex have shown different DNA stability and fluorescence enhancement. The results show that both complexes can induce the stabilization of quadruplex DNA. ΔTm values of complexes 1 and 2 at [Ru]/[DNA] ratio of 1:1 were 9.4 and 7.0, respectively. Binding stoichiometry along with the quadruplex was investigated through a luminescence-based Job plot. The major inflection points for complexes 1 and 2 were 0.49 and 0.46, respectively. The data were consistent with the binding mode at a [quadruplex]/[complex] ratio of 1:1. In addition, the conformation of G-quadruplex was not changed by the complexes at the high ionic strength of K+ buffer.  相似文献   

10.
Sharon S. Yu  Hsueh Jei Li 《Biopolymers》1973,12(12):2777-2788
Protamine–DNA complexes prepared by the method of direct and slow mixing in 2.5 × 10?4M EDTA, pH 8.0, have been studied by thermal denaturation and circular dichroism. The complexes show biphasic melting with Tm at about 50 °C corresponding to the melting of free DNA regions and Tm′ at about 92 °C corresponding to the melting of protamine-bound regions. In protamine-bound regions there are 1.38 amino acid residues per nucleotide, indicating a nearly completely charge neutralization. Tm is increased but Tm′ is not when the ionic strength of the buffer is raised. This also supports a full charge neutralization in protamine-bound regions. The circular dichroism of the complexes can be decomposed into two components, Δε0 of free DNA regions in B-form conformation and Δεb of protamine-bound regions in a characteristic conformation neither that of B- nor C-form but somewhere between them.  相似文献   

11.
The alkylating thiovinyl fragment released from S-(1,2-dichlorovinyl)-l-[35S]-cysteine by a lyase reacted with about 12% of the amino acid residues in poly-l-lysine and about 6% in poly-l-arginine. The reaction of alkylating fragment with DNA was considerably reduced through complex formation of DNA with these polypeptides. When (alkylating fragment)-treated DNA interacted with either normal or (alkylating fragment)-treated polypeptides, the products had an abnormal biphasic melting profile. The first (lower) Tm is apparently due to (alkylating fragment)-substituted regions of DNA which are not complexed with polypeptide and have, like (alkylating fragment)-substituted DNA, a higher Tm than free, native DNA. A second, much higher Tm is due to (alkylating fragment)-substituted regions of DNA which are complexed with polypeptide. These complexes were, however, less stable and had lower Tm values than those prepared from normal, native DNA. The implications of complex formation with respect to susceptibility of tissues and species to toxic agents are discussed.  相似文献   

12.
The interaction of copper complexes of (−)-epicatechin gallate (ECG) and (−)-epigallocatechin gallate (EGCG) with calf thymus DNA (ct-DNA) was investigated by UV-visible (UV-Vis), fluorescence and circular dichroism along with melting studies. It was observed that both copper complexes quench the fluorescence intensity of ethidium bromide bound ct-DNA upon binding, resulting in a ground state complex formation by a static quenching process. The binding constants evaluated from fluorescence data were supported by the UV-Vis study. The values ranged from 0.84 to 1.07 × 105 M−1 and 1.14 to 1.04 × 105 M−1 for Cu(II)-ECG and Cu(II)-EGCG, respectively for the temperature range 21-42 °C with two binding sites. Thermodynamic parameters obtained are suggestive of the involvement of different modes of interaction during binding for each complex although both were found to be intercalating in nature. Circular dichroism studies and variations in the melting temperature reveal unwinding of the ct-DNA helix with conformational changes due to binding.  相似文献   

13.
High-resolution melting of dsDNA using suitable dyes is a simple and cost-effective alternative for mutation scanning. Analytical variation can result from salt and template concentration (CT). To overcome this problem the van’t Hoff transition enthalpy ΔHvH from dsDNA melting curves was estimated and used for robust genotype calling or mutation scanning. Model calculations show the effect of salt, CT, and temperature resolution on (1) Tm, (2) difference plots, (3) melting peaks, and (4) calculated ΔHvH. Using the LightCycler480, the influence of dye (ResoLight) and scanning speed was assessed. The model calculations show that only ΔHvH is not influenced by salt and CT. Higher amplicon enthalpy ameliorates the ability to discriminate mutations. Temperature resolution is important for peak- but not for curve-based genotyping. ResoLight increases Tm by 3.4 °C, while lowering ΔHvH. Using a 4-bp deletion in a 200-bp amplicon as a model, the miscalling rate improved substantially, when using ΔHvH instead of difference plots. Melting curves of duplex DNA are influenced by dye and salt and less so by duplex concentrations. As predicted from theory, ΔHvH is a robust measure for mutation detection in two-state melting. The influence of dyes on enthalpy is of general impact for PCR assays.  相似文献   

14.
The interaction between DNA and furazolidone/furacillin was investigated using various analytical techniques including spectroscopy and electroanalysis and molecular modelling. With the aid of acridine orange (AO), the fluorescence lifetimes of DNA–AO, DNA–furazolidone/furacillin–AO remained almost the same, which proved that the ground state complex was formed due to furazolidone/furacillin binding with DNA. Circular dichroism spectra and Fourier transform infrared spectroscopy showed that the second structure of DNA changed. Viscosity experiments presented that relative viscosity of DNA was increased with the increasing concentrations of furazolidone and almost unchanged for furacilin. In addition, the results of melting temperature (Tm), ionic strength, site competition experiments, cyclic voltammetry, and molecular docking all proved the intercalation binding mode for furazolidone and groove binding mode for furacilin. The binding constants (Ka) obtained from Wolfe–Shimmer equation were calculated as 3.66 × 104 L mol?1 and 3.95 × 104 L mol?1 for furazolidone–DNA and furacilin–DNA, respectively.  相似文献   

15.
Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg2+ and during helix-coil transitions of DNA by temperature (Tm) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×103 M−1, DNA-theobromine = 1.1×103 M−1, and DNA-Caffeine = 3.8×103 M−1. On the other hand Tm/pH melting profiles showed 24–35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg2+, methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg2+. The spectral analyses indicated the order of binding affinity as “caffeine≥theophylline>theobromine” to the native double helical DNA, and “theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.  相似文献   

16.
D C Liebe  J E Stuehr 《Biopolymers》1972,11(1):145-166
Both kinetic and equilibrium properties of DNA denaturation in the presence of copper(II) cation were studied by using optical techniques. Equilibrium properties of the reaction, measured in terms of Tm, the melting temperature, were shown to depend not on the overall but on the equilibrium concentrations of the species involved. Although Tm did increase with DNA concentration at low copper(II) concentrations, under similar conditions an increase in Tm with increasing copper(II) concentration was not observed. The kinetic properties of the reaction, characterized by the terminal relaxation time, were also found to depend on equilibrium concentrations of reactants. Application of standard methods of relaxation kinetics led to the proposal of a mechanism for copper(II)–DNA complex formation. That mechanism involves the rapid binding of two copper(II) ions to a reaction site on the polymer, followed by a slow, rate-limiting, first-order decay of the complex to the denatured state.  相似文献   

17.
Ruthenium complexes with one dipyrido[3,2-a:2′-3′-c]phenazine (dppz) ligand, e.g. [Ru(phen)2(dppz)]2+ (phen = phenanthroline), shows strong binding to double helical DNA and are well-known DNA “light-switch” molecules. We have here investigated four new [Ru(phen)2(dppz)]2+ derivatives with different bulky quaternary ammonium substituents on the dppz ligand to find relationships between molecular structure and intercalation kinetics, which is considered to be of importance for antitumor applicability. Linear dichroism spectroscopy shows that the enantiomers of the new complexes exhibit very similar binding geometries (intercalation of dppz moiety between adjacent DNA base pairs) as the enantiomers of the parent [Ru(phen)2(dppz)]2+ complex. Absorption spectra and luminescence properties provide further evidence for a final intercalative binding mode which has to be reached by threading of a bulky moiety between the strands of the DNA. Δ-enantiomers of all the new complexes show much slower association and dissociation kinetics than that of a reference complex without a cationic substituent. Kinetics were not very different whether the bulky quaternary group was derived from hexamethylene tetramine or 1,4-diazabicyclo-(2,2,2)octane (DABCO) or whether it had one or two positive charges. However, a complex in which the hexamethylene tetramine substituent is attached via a phenyl group showed a lowered association rate, in addition to an improved quantum yield of luminescence. A second positive charge on the DABCO substituent resulted in a much slower dissociation rate, suggesting that the distance from the Ru-centre and the amount of charge are both important for threading intercalation kinetics.  相似文献   

18.
R M Santella  H J Li 《Biopolymers》1977,16(9):1879-1894
Poly(Lys48, His52), a random copolypeptide of L -lysine (48%) and L -histidine (52%), was used as a model protein for investigating the effects of protonation on the imidazole group of histidines on protein binding to DNA. The complexes formed between poly(Lys48, His52) and DNA were examined using absorbance, circular dichroism (CD), and thermal denaturation. Although increasing pH reduces the charges on histidine side chains in the model protein, the protein still binds the DNA with approximately one positive charge per negative charge in protein-bound regions. Nevertheless, CD and melting properties of poly(Lys48, His52)-DNA complexes still depend upon the solution pH which determines the protonation state of imidazole group of histidine side chains. At pH 7.0, the complexes show two characteristic melting bands with a tm (46–51°C) for free base pairs and a tm (94°C) for protein-bound base pairs. The tm of the complexes is reduced to 90°C at pH 9.2, although at this pH there is still one lysine per phosphate in protein-bound regions. Presumably, the presence of deprotonated histidine residues destabilizes the native structure of protein-bound DNA. The binding of this model protein to DNA causes a red shift of the crossover point and both a red shift and a reduction of the positive CD band of DNA near 275 nm. This phenomenon is similar to that caused by polylysine binding. These effects, however, are greatly diminished when histidine side chains in the model protein are deprotonated. The structure of already formed poly(Lys48, His52)·DNA complexes can be perturbed by changing the solution pH. However, the results suggest a readjustment of the complex to accommodate charge interactions rather than a full dissociation of the complex followed by reassociation between the model protein and DNA.  相似文献   

19.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

20.
The interaction of methylene blue (MB) with DNA has been investigated by UV absorption spectra, Fluorescence spectra and UV-melting method. Analysis of the results of the melting experiments shows that melting temperature (T m) of the complexes increases with the [total ligand]: DNA ratio (r) at two concentrations of Na+ (2?mM Na+ and 20?mM Na+) providing support for conclusion that MB is a stabilizer of DNA helix structure. By contrast, the shapes of dependences of width of transition (ΔT) on r at low and high [Na+] are different which points to the existence of different types of binding modes of MB with DNA. UV-spectroscopy experiments and fluorescence spectra indicated that the binding modes of MB with DNA depended on r. At high r (r?>?0.25), remarkable hypochromic effect with no shift of λ max in the absorption spectra of MB was observed. The fluorescence of MB was quenched which indicated that MB was bound to phosphate groups of DNA by electrostatic interaction. At low r ratios (r?<?0.2), the absorption spectra of MB upon increasing the concentration of DNA showed gradually decrease in the peak intensities with a red shift. This phenomenon is usually associated with molecular intercalation into the base stack of the ds-DNA. Using the Scatchard’s model, the complex formation constants for MB with DNA were determined: the binding constant K?≈?6.5?×?105 and binding site size n?≈?4. Obtained data are not typical for intercalation model of ligands to DNA. Moreover, comparison between these data and our early experimental results of interaction of ethidium bromide with DNA made it possible to suggest that this binding type of MB is, more probably, semi-intercalation mode (Vardevanyan et al., 2003). This conclusion is in accordance with the analysis of the model structures of MB–DNA complexes which clearly shows the importance of solvent contributions in suggested structural form (Tong et al., 2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号