首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Glucoamylase (exo-1,4-α-d-glucosidase, EC 3.2.1.3) has been coupled to several porous silica matrices by a new covalent process using alkylamine derivatives of titanium(IV)-activated supports. In order to investigate the interaction of the titanium element with the silanol groups of the inorganic matrices, activation was performed at different times, using titanium(IV) chloride, either pure or as a 15% w/v solution, in 15% w/v hydrochloric acid at 25, 45 and 80°C, followed by washing with sodium acetate buffer (0.02m, pH 4.5) or chloroform. Using pure TiCl4, the highest activities of all preparations were obtained at 80°C and with acetate buffer washing, resulting from a higher content of titanium coating of the carrier. When activation was performed in aqueous TiCl4 solution, followed by a drying step, the highest activity was obtained with preparations washed with chloroform, with or without amination. When reacting pure TiCl4 with controlled pore glass (CPG) and with porous silica (Spherosil), colour formation was observed after reaction of glutaraldehyde with the aminated support. This did not happen when Celite was used as the support. As a criterion for comparison of the different immobilized enzyme preparations, the concept of an ‘instability factor’, which measures the percentage of immobilized enzyme activity due to release of enzyme into solution, is introduced. Instability factors of immobilized enzyme preparations on Celite were always higher than those obtained with the other matrices, confirming that there was no covalent coupling of the enzyme to Celite. However, when the activation was performed with aqueous TiCl4 solution with drying, Schiff's base formation was observed in all preparations and very stable immobilized enzyme preparations were obtained. The results of the activation of controlled pore glass and porous silica with pure titanium(IV) chloride suggest the existence of a true reaction between the titanium element and the silanol groups of these carriers by formation of a bridge, Si-O-Ti, while with the titanium(IV) chloride solution in hydrochloric acid, a coating of hydrous titanium(IV) oxide is obtained.  相似文献   

2.
The compositions and compositional-behavioural relationships of glucoamylase (exo-1,4-α-d-glucosidase, EC 3.2.1.3) immobilized on titanium(IV)-activated porous inorganic supports have been investigated for several transition metal activation techniques based on the metal-link/chelation method developed by our group. The highest activity (239 Ug?1 matrix) of immobilized glucoamylase was obtained with the hydrous titanium(IV) oxide derivative of the support when this and a 15% w/v TiCl4 solution were dried at 45°C in vacuum for 30 h. However, the immobilized enzyme preparation displayed a very unstable behaviour, as did also the preparation which was obtained by drying the mixture of support and transition metal solution at atmospheric pressure. This was mainly due to an enzyme deactivation by titanium inhibition instead of enzyme loss in substrate solution. When amination and carbonylation steps were included in the immobilization technique much more stable preparations were obtained, mainly when the support was activated by drying at 45°C with a 15% w/v TiCl4 solution (t12 = 1495 h) although with a lower initial activity (35.6 Ug?1 matrix). The pure TiCl4 support activation rather than TiCl4/HCl solution support activation led to less stable immobilized enzyme preparations (washing and amination solvent chloroform, t12 = 365 h; washing and amination solvent water, t12 = 276 h) than the preparation obtained with the dried titanium(IV)-activated support. This was due to loss of enzyme-titanium(IV) complex in solution, as the interactions between the titanium(IV) and the silanol groups of the porous silica are weak. However, the amination (with 1,6-diaminohexane) and carbonylation (with glutaraldehyde) steps always led to immobilized enzyme preparations with constant specific activities and protein/titanium(IV) ratio. This suggests that the spacing effect introduced by these reactions removes the titanium(IV) inhibition of glucoamylase.  相似文献   

3.
A number of methods of activating the surface of glutaraldehyde crosslinked gelatin beads with titanium(IV) compounds, for subsequent enzyme coupling, have been investigated. Glucoamylase (exo-1,4-α-d-glucosidase, EC 3.2.1.3) was so immobilized using titanium(IV)-urea, -acrylamide, -citric acid and -lactose complexes; however, immobilized enzyme preparations with low activities were obtained (0.36–1.28 U g?1). Activation with uncomplexed titanium(IV) chloride, however, of both moist and freeze-dried crosslinked gelatin particles resulted in highly active immobilized glucoamylase preparations (1.74–26.6 U g?1). Dual immobilized enzyme conjugates of glucoamylase and invertase (β-d-fructofuranosidase, EC 3.2.1.26) were also prepared using this method. Invertase was served on the entrapped enzyme while glucoamylase was coupled on the surface of titanium(IV)-activated gelatin pre-entrapped invertase particles. A dual gelatin coupled glucoamylase/gelatin entrapped glucoamylase was prepared (3.8 U g?1) and ~72.5% of the total combined activity was due to the surface bound enzyme.  相似文献   

4.
Glucoamylase (EC 3.2.1.3) was coupled to controlled pore glass by using titanium(IV) chloride. The drying conditions used during the activation step were studied, and the highest activity (237 units/g of matrix) of immobilized enzyme was obtained when the support and the titanium(IV) chloride solution were dried at 45°C in vacuo for 16 h. After several washing cycles, the specific activity of the immobilized enzyme was ~13 units/mg of protein irrespective of the washing cycle used. However, this immobilized enzyme preparation was also the least stable (t12 = 1 h). Investigation of the possibility of the stabilization of the linkage of the enzyme to the support by crosslinking with bifunctional reagents showed that the stabilization of the enzyme (t12=100 h) was achievable by treatment with a 5% glutaraldehyde solution at pH 7.0 for 2 h (product activity 67 units/g of matrix, specific activity 4 units/mg of protein); this product also showed no release of protein during use. A higher activity (296 units/g of matrix was achieved by stabilization by treatment with a 5% tannic acid solution at pH 7.0 for 2 h. The combined use of glutaraldehyde and tannic acid was effective in stabilizing the bound enzyme (t12=80 to 120 h) with an initial activity of 116 units/g of matrix. When use was made of the same support in presilanized (3-aminopropyltriethoxy silane) form followed by glutaraldehyde coupling a similar initial activity (112 units/g of matrix) was obtained, but the operational stability was much better (t12 = 640 h.  相似文献   

5.
The present study assessed the suitability of titanium(IV) oxide, TiO2, as a digesta passage marker in Nile tilapia Oreochromis niloticus and studied the shape of the evacuation curve in this species. In three separate trials, fish were given one dose of either 0·5, 0·25 or 0·1% of their body mass (% BME) of feed marked with 1% TiO2 or 0·5% BME of the same feed without marker. The fish were serially slaughtered at intervals after feeding and the stomach contents analysed for dry mass and marker content. The data for individual trials were analysed with the linear, square root, surface area and exponential evacuation models and parameter comparisons showed that, although the marker interfered slightly with the evacuation process, true meal size could be predicted more accurately from the marker data. The results of an analysis of the combined data sets suggested that stomach evacuation in this species is dependent more on food particle surface area (surface area model) than on stomach content mass (exponential model) as is generally assumed. On the basis of these results, it was concluded that TiO2 at an inclusion level of 1% is an acceptable marker for quantifying evacuation with a view to predicting food consumption but should be used with caution in digestibility studies.  相似文献   

6.
C(2)-Symmetric chiral diethoxyphosphoramide 4, diethoxythiophosphoramide 5, and diisopropoxyphosphoramide 6 of (1R, 2R)-1,2-diaminocyclohexane were prepared by the reactions of diethoxyphosphinic chloride, diethoxythiophosphinic chloride, and diisopropoxyphosphinic chloride with (1R, 2R)-1,2-diaminocyclohexane, respectively. They were used as catalytic chiral ligands in the asymmetric addition reactions of diethylzinc to aldehydes in the presence of titanium(IV) isopropoxide to give the corresponding sec-alcohols with 43-70% ee. Chiral ligands 4 and 5 gave the sec-alcohols with opposite absolute configuration.  相似文献   

7.
The speciation of several insulin-mimetic/enhancing VO(IV) and Zn(II) complexes in human blood serum was studied and a comparison was made concerning the ability of the serum components to interact with the original metal complexes and the distribution of the metal ions between the low and the high molecular fractions of the serum. It was found that the low molecular mass components may play a larger role in transporting Zn(II) than in the case with VO(IV). Among the high molecular mass serum proteins, transferrin is the primary binder of VO(IV), and albumin is that of Zn(II). The results revealed that protein-ligand interactions may influence the metal ion distribution in the serum.  相似文献   

8.
A series of diorganotin (IV) complexes of the types of R2SnCl(SSCC3H3N2) (R = CH31, nBu 2, C6H53 and C6H5CH24), R2Sn(SSCC3H3N2)2 (R = CH35, nBu 6, C6H57 and C6H5CH28) and R2Sn(SSCC3H2N2) (R = CH39, nBu 10, C6H511 and C6H5CH212) have been obtained by reactions of 4(5)-imidazoledithiocarboxylic acid with diorganotin (IV) dichlorides in the presence of sodium ethoxide. All complexes are characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. Also, the complexes 1, 7 and 9 are characterized by X-ray crystallography diffraction analyses, which reveal that the complex 1 is monomeric structure with five-coordinate tin (IV) atom, the complex 7 is monomeric structure with six-coordinate tin (IV) atom and the complex 9 is one-dimensional chain with five-coordinate tin (IV) atom.  相似文献   

9.
The influence of substituted nicotine and isonicotine amides and their Pt(IV) metal complexes on activity of cAMP specific phosphodoiesterase (cAMP-PDE), hydrolyzing cAMP, known second messenger, has been investigated. Isonicotine derivatives are effective activators of this enzyme. On the contrary, substituted nicotine amides inhibited cAMP-PDE activity as efficiently as a reference substance, theophylline. In general, the inhibitory effects of nicotine amides and their metal complexes did not differ. However, in contrast to the parent compound, one of the metal complexes of this group competitively inhibited the enzyme while the complex and the ligand itself had the same reversibility.  相似文献   

10.
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents.  相似文献   

11.
In this study, the in vivo effects of insulin and chronic treatment with bis(maltolato)oxovanadium (IV) (BMOV) on protein kinase B (PKB) activity were examined in the liver and skeletal muscle from two animal models of diabetes, the STZdiabetic Wistar rat and the fatty Zucker rat. Animals were treated with BMOV in the drinking water (0.75–1 mg/ml) for 3 (or 8) weeks and sacrificed with or without insulin injection. Insulin (5 U/kg, i.v.) increased PKB activity more than 10fold and PKB activity more than 3fold in both animal models. Despite the development of insulin resistance, insulininduced activation of PKB was not impaired in the STZdiabetic rats up to 9 weeks of diabetes, excluding a role for PKB in the development of insulin resistance in type 1 diabetes. Insulin-induced PKB activity was markedly reduced in the skeletal muscle of fatty Zucker rats as compared to lean littermates (fatty: 7fold vs. lean: 14fold). In contrast, a significant increase in insulinstimulated PKBa activity was observed in the liver of fatty Zucker rats (fatty: 15.7fold vs. lean: 7.6fold). Chronic treatment with BMOV normalized plasma glucose levels in STZdiabetic rats and decreased plasma insulin levels in fatty Zucker rats but did not have any effect on basal or insulininduced PKB and PKB activities. In conclusion (i) in STZdiabetic rats PKB activity was normal up to 9 weeks of diabetes; (ii) in fatty Zucker rats insulininduced activation of PKB (but not PKB) was markedly altered in both tissues; (iii) changes in PKB activity were tissue specific; (iv) the glucoregulatory effects of BMOV were independent of PKB activity.  相似文献   

12.
The intial velocity vs ATP concentration curves obtained with the plasma membrane H+-ATPase from red beet ( Beta vulgaris L.) did not follow classical Michaelis-Menten kinetics. A rate equation containing second-order terms in ATP concentration in both the numerator and the denominator was used to obtain a significantly better fit to the data. The observed deviations from Michaelis-Menten kinetics were more pronounced in the presence of potassium ions. The inhibition caused by inorganic phosphate was partial. i.e. the ATPase activity extrapolated at an infinite phosphate concentration was not zero. In contrast, the inhibition produced by orthovanadate was nearly total. The inhibitions caused by both phosphate and vanadate were uncompetitive with respect to ATP and enhanced by potassium ions and high concentrations of dimethyl sulfoxide. a solvent used to lower the water activity of the reaction medium. The ATP-dependent proton transport was stimulated by potassium ions and was inhibited by phosphate only at high ATP concentrations. A kinetic mechanism, in which the H+-ATPase can adopt two conformations during its catalytic cycle and can form a ternary enzyme-ATP-phosphate complex able to hydrolyze bound ATP. is proposed to explain those results.  相似文献   

13.
Mitochondria-rich cells (MRC) of the amphibian epidermis are responsible for active chloride uptake at low external salinity, and new MRCs are recruited in response to exposure to distilled (deionized) water. The time-course of this recruitment, the tissue kinetics and ion transport have been studied in toads (Bufo bufo) immediately before, and after 2,7, and 14 days exposure to distilled water. General epidermal structure was not affected. However, the numbers of MRCs per mm2 (DMRC) increased throughout the experiment as revealed by staining of epidermal sheets with AgNO3 (Ag) or methylene blue (MB). Part of the increased DMRC was accounted for by an increase in MRC subpopulation(s) that stained neither with Ag nor MB. The cell birth rate (Kb) decreased and cell loss by moulting (Kd) increased without any significant change in epidermal cell pool size, indicating a reduced apoptotic rate. The increase in DMRC was accompanied by a 3-fold increase in Cl- current (ICl). At day-2 there was a transient reduction in the ICl per MRC. H+ secretion was progressively reduced during prolonged exposure to distilled water. Thus, at day-2 MRCs appeared incompletely differentiated as indicated by decreased ICl and H+ flux per MRC, and by the increased proportion of MRCs unstained by Ag or MB. Full Cl- (but not H+) transport capacity, was restored at day-7. We conclude that increased DMRC following exposure to low external Cl-, rather than being due to an increased Kb, is the combined effect of a decreased apoptotic rate and an increased rate of differentiation, where morphological differentiation precedes functional differentiation.Parts of this study have been presented at the 32th International Congress of Physiological Sciences, 1–6 August, 1993, Glasgow, Scotland, and the 19th meeting of the European Study Group for Cell Proliferation, 5–9 October, 1993, Bruges, Belgium  相似文献   

14.
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca2+, but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca2+-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca2+-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca2+ by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca2+ dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号