首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and d-glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized d-glucose oxidase membrane was 0.34 units cm?2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized d-glucose oxidase membrane was 1.6 × 10?3 mol l?1 and that of free enzyme was 4.8 × 10?2 mol l?1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized d-glucose oxidase membrane. The enzyme electrode responded linearly to d-glucose over the concentration 0–1000 mg dl?1 within 10 s. When the enzyme electrode was applied to the determination of d-glucose in human serum, within day precision (CV) was 1.29% for d-glucose concentration with a mean value of 106.8 mg dl?1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized d-glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of d-glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

2.
Three enzymes, cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], d-glucose oxidase (β-d-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) and peroxidase (donor:hydrogen peroxide oxidoreductase, EC 1.11.1.7) immobilized on glass beads, have been incubated with lignocellulose. Fungal peroxidases from Trametes versicolor and Inonotus radiatus when mixed with cellulase and d-glucose oxidase were able to liberate phenolic compounds and d-glucose from lignocellulose. Three lignin monomers were identified. When the immobilized enzymes were incubated individually with lignocellulose they did not degrade lignin.  相似文献   

3.
Previous work from this laboratory has shown that 5-thio-d-glucose is a competitive inhibitor for active transport of d-glucose. The present work indicates that the thiosugar analog and its 1-phosphate can also interfere with d-glucose 6-P formation.5-Thio-d-glucose serves as a substrate for yeast hexokinase with a Km of 4 mm, and V of 8.8 nmol/min/μg of protein. The analog competitively inhibits d-glucose phosphorylation with a Ki of 20 mm.5-Thio-d-glucose 1-P can act as a substrate for rabbit skeletal muscle phosphoglucomutase with a Km of 60 μm and V of 0.17 μmol/min/μg of protein. Thus, 5-thio-d-glucose 1-P behaves as a near metabolic analog of d-glucose 1-P. 5-Thio-d-glucose 1-P is a competitive inhibitor of d-glucose 1-P conversion to the 6-P with a Ki of 16.2 μm.5-Thio-d-glucose 6-P produced by phosphorylation of 5-thio-d-glucose and by conversion from 5-thio-d-glucose 1-P was identified by chromatographic mobility and by color reactions.  相似文献   

4.
An automated procedure allows uptake measurements with incubation times as short as 0.5 s and with volumes of 10–20 μl. Using this technique the kinetic parameters Km and V of d-glucose transport in brush border vesicles from rabbit small intestine could be determined from unidirectional fluxes. A comparison of the data obtained from jejunum and from ileum shows that the Km for d-glucose is the same in both parts of the intestine, whereas the maximum flux is significantly larger in the jejunum.  相似文献   

5.
The immobilization of a d-glucose oxidase (β-d-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) monolayer onto a glassy carbon rotating disc electrode allows the measurement of concentrations in the enzyme's microenvironment and, hence, gives a method of easily following its activity. As it functions, d-glucose oxidase undergoes an autoinactivation which is clearly distinct from inactivation by H2O2, and which is more severe as the concentration of the two substrates is increased. It appears that the number of catalytic cycles is fixed at 107, irrespective of the concentrations of the two substrates. Kinetically, it is the enzyme-substrate complex which seems to be inactivated. Scavengers of toxic species of O2 have no effect on the kinetics of autoinactivation. Identical results were found in solution.  相似文献   

6.
Human placental microsomes exhibit uptake of d-[3H]glucose which is sensitive to inhibition by cytochalasin B (apparent Ki = 0.78 /gm M). Characterization of [3H]cytochalasin B binding to these membranes reveals a glucose-sensitive site, inhibited by d-glucose with an ED50 = 40 mM. The glucose-sensitive cytochalasin B binding site is found to have a Kd = 0.15μM by analysis according to Scatchard. Solubilization with octylglucoside extracts 60–70% of the glucose-sensitive binding component. Equilibrium dialysis binding of [3H]cytochalasin B to the soluble protein displays a pattern of inhibition by d-glucose similar to that observed for intact membranes, and the measurement of an ED50 = 37.5 mM d-glucose confirms the presence of the cytochalasin B binding component, putatively assigned as the glucose transporter. Further evidence is attained by photoaffinity labelling; ultraviolet-sensitive [3H]cytochalasin B incorporation into soluble protein (Mr range 42 000-68 000) is prevented by the presence of d-glucose. An identical photolabelling pattern is observed for incorporation of [3H]cytochalasin B into intact membrane protein, confirming the usefulness of this approach as a means of identifying the presence of the glucose transport protein under several conditions.  相似文献   

7.
《Process Biochemistry》2014,49(12):2191-2198
Laccase and peroxidases mainly cause polymerization of lignin in vitro due to the random coupling of the phenoxy radicals or quinoid intermediates. White rot fungi may avoid polymerization in vivo by reduction of these intermediates. Pyranose oxidase is suggested to play such a role based on its quinone-reducing activity, but direct evidence has been lacking. In this study, a pyranose oxidase was purified from the white rot fungus Irpex lacteus and partially characterized. The enzyme is composed of four subunits of 71 kDa as determined by SDS-PAGE. It exhibits maximum activity at pH 6.5 and 55 °C and is rather stable. d-glucose is the preferred substrate, but d-galactose, l-sorbose and d-xylose are also readily oxidized. In addition to O2, the enzyme can also transfer electrons to various quinones and the ABTS [2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)] cation radical. Laccase-generated quinoids are also reduced by the enzyme. Four different technical lignins were treated with laccase with and without pyranose oxidase. Subsequent gel permeation chromatography analysis demonstrated that the pyranose oxidase efficiently inhibited the polymerization of lignin caused by laccase and even brought about degradation.  相似文献   

8.
Rabbit kidney brush-border membrane vesicles were exposed to bacterial protease which cleaves off a large number of externally oriented proteins. Na+-dependent d-glucose transport is left intact in the protease-treated vesicles. The protease-treated membrane was solubilized with deoxycholate and the deoxycholate-extracted proteins were further resolved by passage through Con A-Sepharose columns. Sodium-dependent d-glucose activity was found to reside in a fraction containing a single protein band of Mr ? 165000 which is apparently a dimer of Mr ? 85 000. When reconstituted and tested for transport, this protein showed Na+-dependent, stereo-specific and phlorizin-inhibitable glucose transport. Transport activity is completely recovered and is 20-fold increased in specific activity. A similar isolate was obtained from rabbit small intestinal brush-border membranes and kidneys from several other species of animals.  相似文献   

9.
A sensitive, rapid, and reliable method for measuring d-glucose and d-galactose levels in glycoconjugates has been developed. In this method, the NAD(P)H produced from the enzymatic oxidation of the monosaccharides is reacted with a CuSO4-bathocuproinedisulfonic acid reagent (Cu-BCS) to produce a color complex absorbing maximally at 486 nm. With galactose dehydrogenase and glucose dehydrogenase serving as the model enzymes, graphs of absorbance versus varying d-glucose or d-galactose concentrations yielded a linear plot from 2.5 to 250 nmol of sugar. Using this procedure, sugar released by acid hydrolysis from lactose, porcine submaxillary mucin and raffinose was quantified. When p-nitrophenyl-α-d-glucopyranoside and p-nitrophenyl-β-d-galactopyranoside were acid hydrolyzed and assayed with the Cu-BCS reagent, the amount of sugar released from each of the p-nitrophenyl compounds was found to be equal to the levels of p-nitrophenol in solution. This method is easy to use and with minor modifications can be employed for the quantification of d-glucose and d-galactose in other glycoconjugates.  相似文献   

10.
Aldose reductase, a possible key enzyme of sugar-cataract formation in diabetes, has been purified from bovine lens by a five-step procedure including affinity chromatography with Mātrex gel red A. The enzyme was purified 12,600-fold and was apparently homogeneous by polyacrylamide gel electrophoresis. The glucose specificity of the purified enzyme was studied with d-glucose anomers and d-glucitol as substrates. The ratios of the reduction rate of α-d-glucose to that of β-d-glucose at 10, 13, and 20 mm were 1.90, 1.76, and 1.72, respectively. These values were in good agreement with the ratios (1.92, 1.81, and 1.66) calculated on the basis of the rate constants reported for d-glucose mutarotation equilibrium (J. M. Los, L. B. Simpson, and K. Wiesner, 1956, J. Amer. Chem. Soc.78, 1564–1568) and the assumption that aldose reductase acts on the aldehyde form of d-glucose. In addition, the composition of d-glucose produced from d-glucitol in the reverse reaction was 63% α anomer and 37% β anomer, which also agreed well with the values, 65 and 35%, respectively, calculated from the rate constants in reactions from the aldehyde form to both the α anomer and the β anomer. It was suggested from these kinetic analyses that aldose reductase acts on the aldehyde form of d-glucose (Km = 0.66 μm) but not on either the α or the β anomer of d-glucose.  相似文献   

11.
A bioelectrochemical cell containing either d-glucose oxidase (β-d-glucose:oxygen 1-oxidoreductase, EC 1.1.3.4) or xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2) plus dichlorophenol-indophenol as electron acceptor in one half-cell, and chloroperoxidase (chloride:hydrogen-peroxide oxidoreductase, EC 1.11.1.10) in the other half-cell is described. Due to a combination of chemical, biochemical and electrochemical reactions, electricity and specific (bio)chemicals can be produced in the cell simultaneously and in both compartments. Furthermore, the oxidases in a bioelectrochemical cell are not inactivated by H2O2 and as a result the operational lifetimes of the oxidases were increased about five-fold.  相似文献   

12.
Amylose was oxidized with 0.1–0.2 mol of periodate per glucose residue (G), and then reduced with sodium borohydride or borotritide to give an oxidized-reduced amylose of low degree of modification. Mild acid hydrolysis gave erythritol, 2-O-α-d-glucosyl-l-erythritol, higher homologs, and other products. Extensive action of porcine-pancreatic amylase on the polymer gave, besides d-glucose and maltose, oligosaccharides containing one or more oxidized-reduced (modified, M), acyclic residues. The enzymic products containing only one oxidized-reduced residue were identified as a modified tetrasaccharide (MG3) and a modified pentasaccharide (MG4). Structures of MG3 and MG4 were identified by a combination of enzymic and chemical approaches. With glucoamylase, MG4 was converted into MG plus d-glucose, whereas MG3 was totally resistant. On mild acidic hydrolysis, MG3 was converted into 2-O-α-d-glucosyl-d-erythritol plus maltose. These results indicate that MG3 is G-M-G-G and that MG4 is G-G-M-G-G. In principle, MG4 could occupy the five d-glucose residue, substrate-binding site of porcine-pancreatic amylase in such a way that M, the acyclic structure replacing a d-glucose residue, is placed just to the “left” of the catalytic site. The modified structure, being very vulnerable to acidic hydrolysis, might then be expected to be very readily attacked by the amylase, but in fact, it is not.  相似文献   

13.
The active transport of d-glucose by membrane vesicles prepared from Azotobactervinelandii strain O is coupled to the oxidation of l-malate. The glucose carrier, but not the energy coupling system of the vesicles, is induced by growth of the cells on d-glucose medium. Vesicles isolated from A. vinelandii grown in the presence of sucrose or acetate accumulate glucose at less than 7% of the rate observed for vesicles from glucose-grown cells. Nevertheless, vesicles from sucrose- or acetate-grown cells transport sucrose or calcium, respectively, in the presence of malate.The transport system expressed in vesicles from glucose-cultured cells is highly specific for d-glucose. Studies of glucose analog uptake and of the competitive effect of analogs reveal that: (i) The glucose carrier is stereospecific. (ii) The affinity of hexoses for the transport system is inversely related to the bulk of substituents on the pyranose ring, especially at the C-1 and C-2 positions, (iii) The most effective competitors, 6-deoxyglucose and 2-deoxyglucose, exhibit affinities only 10–20% that of d-glucose for the transport system, (iv) Phloretin, but not phlorizin, is a competitive inhibitor of glucose transport, having an apparent Ki of 9 μm at pH 7.0. These latter findings suggest a similarity of the glucose transport system of fxA. vinelandii and those of eukaryotes with regard to the glucose carrier.  相似文献   

14.
Dextransucrase and the mechanism for dextran biosynthesis   总被引:1,自引:0,他引:1  
Remaud-Simeon and co-workers [Moulis, C.; Joucla, G.; Harrison, D.; Fabre, E.; Potocki-Veronese, G.; Monsan, P.; Remaud-Simeon, M. J. Biol. Chem., 2006, 281, 31254-31267] have recently proposed that a truncated Escherichia coli recombinant B-512F dextransucrase uses sucrose and the hydrolysis product of sucrose, d-glucose, as initiator primers for the nonreducing-end synthesis of dextran. Using 14C-labeled d-glucose in a dextransucrase-sucrose digest, it was found that <0.02% of the d-glucose appears in a dextran of Mn 84,420, showing that d-glucose is not an initiator primer, and when the dextran was treated with 0.01 M HCl at 80 °C for 90 min and a separate sample with invertase at 50 °C for 24 h, no d-fructose was formed, indicating that sucrose is not present at the reducing-end of dextran, showing that sucrose also was not an initiator primer. It is further shown that both d-glucose and dextran are covalently attached to B-512FMC dextransucrase at the active site during polymerization. A pulse reaction with [14C]-sucrose and a chase reaction with nonlabeled sucrose, followed by dextran isolation, reduction, and acid hydrolysis, gave 14C-glucitol in the pulsed dextran, which was significantly decreased in the chased dextran, showing that the d-glucose moieties of sucrose are added to the reducing-ends of the covalently linked growing dextran chains. The molecular size of dextran is shown to be inversely proportional to the concentration of the enzyme, indicating a highly processive mechanism in which d-glucose is rapidly added to the reducing-ends of the growing chains, which are extruded from the active site of dextransucrase. It is also shown how the three conserved amino acids (Asp551, Glu589, and Asp 622) at the active sites of glucansucrases participate in the polymerization of dextran and related glucans from a single active site by the addition of the d-glucose moiety of sucrose to the reducing-ends of the covalently linked glucan chains in a two catalytic-site, insertion mechanism.  相似文献   

15.
The protein fraction released from human erythrocyte membranes with 90% acetic acid enhanced the transport of several sugar species when enclosed in erythrocyte ghosts. Both the influx and the efflux of d-glucose were increased so that permeation rather than sugar binding was involved. The permeation increase was selective, being found with d-glucose, d-galactose and d-xylose but not with l-glucose or lactose. The protein-dependent sugar transport was saturable and the incorporation of proteins into the ghost membrane brought Jmax to the level corresponding to intact erythrocytes, leaving Km unchanged.  相似文献   

16.
Three-dimensional X-ray diffraction data were used to determine the crystal structure of α,α-trehalose-calcium bromide monohydrate, a model system for investigation of factors involved in the binding of calcium ions to d-glucans of dental plaques. Crystals of C12H22O11 ·CaBr2·H2O are orthorhombic, space group C2221, with a  11.058(1) b  11.537(1), c  15.101(1) Å, and Z  4. Intensity data for 925 independent reflections were measured with an automated diffractometer. A trial structure, obtained by the heavy-atom method, was refined by least-squares to R  0.03. An outstanding feature of the crystal packing is the interaction of trehalose molecules with calcium ions. Each calcium is coordinated to hydroxyl groups from four symmetry-related d-glucose moieties, thereby cross-linking the trehalose molecules. Similar interactions between calcium ions and the d-glucose residues of extracellular d-glucans may be of importance in the agglutination processes involved in dental-plaque formation.  相似文献   

17.
The partial removal of cholesterol from the human erythrocyte membrane, by contact with lecithin sols, had mixed effects on the transport of d-glucose. When about 8% of the cholesterol was removed, the rate of d-glucose transfer was increased, but as cholesterol was progressively further removed, the transport was inhibited. Replacement of the depleted cholesterol by 3-ketosteroids did not restore the transport activity; but with substitution of steroids containing only a 3β-hydroxy substituent, the rate of glucose transport returned to normal. In some instances, as little as a 2% replacement of the removed cholesterol by 3β-hydroxy steroids was sufficient for full restoration of d-glucose transport. Cholesterol substitution by steroids with a more planar nucleus and a more bulky side chain than cholesterol also aided in the restoration of glucose transfer. The partial removal of cholesterol had no effect on the apparent Km for d-glucose, but excessive membrane cholesterol led to a 4-fold decrease in d-glucose affinity. The extent of transport inhibition by a fixed phloretin treatment was independent of membrane steroid content.  相似文献   

18.
The hydrothermolysis of cellobiose in the range 180–249° has been studied. Kinetic analysis of the reaction showed that 60% of the cellobiose is converted into d-glucose, and 40% into other products. The rate (k1) of cellobiose disintegration is approximately eight times that (k2) of d-glucose. Thus, hydrothermolysis differs from acidic hydrolysis. Hydrothermolysis is not dependent on pH, at least in the range 3–7.  相似文献   

19.
A fluorescent glucose analogue, 6-deoxy-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-aminoglucose (NBDG), was synthesized and its interactions with the hexose transport system of the human red blood cell were investigated. NBDG entry is inhibited by increasing concentrations of d-glucose (Ki = 2 mM). However, NBDG exit is unaffected by d-glucose in red blood cells. Cytochalasin B was found to inhibit both NBDG entry and exit. NBDG accumulates in the red blood cell above the theoretical equilibrium concentration. Accumulation of NBDG is temperature-sensitive and is due to the binding of NBDG to some intracellular substance. The binding of NBDG to purified hemoglobin suggests that accumulation of NBDG by erythrocytes is due to the intracellular binding of NBDG to hemoglobin. NBDG does not accumulate in pink erythrocyte ghosts, while its rate of uptake is still inhibited by d-glucose and cytochalasin B. Although there was no apparent d-glucose inhibition of NBDG exit by intact red blood cells, d-glucose was able to inhibit NBDG exit by pink erythrocyte ghosts. The differing properties of NBDG influx and efflux support the interpretation that the hexose transport system of the human red blood cell appears asymmetric although it may be intrinsically symmetric.  相似文献   

20.
Pyranose oxidase (POx) catalyzes the oxidation of d-glucose to 2-ketoglucose with concurrent reduction of oxygen to H2O2. POx from Trametes ochracea (ToPOx) is known to react with alternative electron acceptors including 1,4-benzoquinone (1,4-BQ), 2,6-dichlorophenol indophenol (DCPIP), and the ferrocenium ion. In this study, enzyme variants with improved electron acceptor turnover and reduced oxygen turnover were characterized as potential anode biocatalysts. Pre-steady-state kinetics of the oxidative half-reaction of ToPOx variants T166R, Q448H, L545C, and L547R with these alternative electron acceptors were evaluated using stopped-flow spectrophotometry. Higher kinetic constants were observed as compared to the wild-type ToPOx for some of the variants. Subsequently, the variants were immobilized on glassy carbon electrodes. Cyclic voltammetry measurements were performed to measure the electrochemical responses of these variants with glucose as substrate in the presence of 1,4-BQ, DCPIP, or ferrocene methanol as redox mediators. High catalytic efficiencies (Imaxapp/KMapp) compared to the wild-type POx proved the potential of these variants for future bioelectrocatalytic applications, in biosensors or biofuel cells. Among the variants, L545C showed the most desirable properties as determined kinetically and electrochemically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号