首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palmitoleate is not present in lipid A isolated from Escherichia coli grown at 30 degrees C or higher, but it comprises approximately 11% of the fatty acyl chains of lipid A in cells grown at 12 degrees C. The appearance of palmitoleate at 12 degrees C is accompanied by a decline in laurate from approximately 18% to approximately 5.5%. We now report that wild-type E. coli shifted from 30 degrees C to 12 degrees C acquire a novel palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase that acts on the key lipid A precursor Kdo2-lipid IVA. The palmitoleoyl transferase is induced more than 30-fold upon cold shock, as judged by assaying extracts of cells shifted to 12 degrees C. The induced activity is maximal after 2 h of cold shock, and then gradually declines but does not disappear. Strains harboring an insertion mutation in the lpxL(htrB) gene, which encodes the enzyme that normally transfers laurate from lauroyl-ACP to Kdo2-lipid IVA (Clementz, T., Bednarski, J. J., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 12095-12102) are not defective in the cold-induced palmitoleoyl transferase. Recently, a gene displaying 54% identity and 73% similarity at the protein level to lpxL was found in the genome of E. coli. This lpxL homologue, designated lpxP, encodes the cold shock-induced palmitoleoyl transferase. Extracts of cells containing lpxP on the multicopy plasmid pSK57 exhibit a 10-fold increase in the specific activity of the cold-induced palmitoleoyl transferase compared with cells lacking the plasmid. The elevated specific activity of the palmitoleoyl transferase under conditions of cold shock is attributed to greatly increased levels of lpxP mRNA. The replacement of laurate with palmitoleate in lipid A may reflect the desirability of maintaining the optimal outer membrane fluidity at 12 degrees C.  相似文献   

2.
All possible combinations of insertion mutations in the three genes encoding the acyl carrier protein-dependent late acyltransferases of lipid A biosynthesis, designated lpxL(htrB), lpxM(msbB), and lpxP, were generated in Escherichia coli K12 W3110. Mutants defective in lpxM synthesize penta-acylated lipid A molecules and grow normally. Strains lacking lpxP fail to incorporate palmitoleate into their lipid A at 12 degrees C but make normal amounts of hexa-acylated lipid A and are viable. Although lpxL mutants and lpxL lpxM double mutants grow slowly on minimal medium at all temperatures, they do not grow on nutrient broth above 32 degrees C. Such mutants retain the ability to synthesize some penta- and hexa-acylated lipid A molecules because of limited induction of lpxP at 30 degrees C but not above 32 degrees C. MKV15, an E. coli lpxL lpxM lpxP triple mutant, likewise grows slowly on minimal medium at all temperatures but not on nutrient broth at any temperature. MKV15 synthesizes a lipid A molecule containing only the four primary (R)-3-hydroxymyristoyl chains. The outer membrane localization and content of lipid A are nearly normal in MKV15, as is the glycerophospholipid and membrane protein composition. However, the rate at which the tetra-acylated lipid A of MKV15 is exported to the outer membrane is reduced compared with wild type. The integrity of the outer membrane of MKV15 is compromised, as judged by antibiotic hypersensitivity, and MKV15 undergoes lysis following centrifugation. MKV15 may prove useful as a host strain for expressing late acyltransferase genes from other Gram-negative bacteria, facilitating the re-engineering of lipid A structure in living cells and the design of novel vaccines.  相似文献   

3.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43 degrees C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20 degrees C, but in a liquid crystalline state when cells were grown at 37 and 43 degrees C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

4.
A mutant of Escherichia coli with a thermosensitive defect, possibly in the outer membrane (omsA mutant), was isolated from E. coli K-12 by mutagenization and selection for thermosensitivity and beta-lactam supersensitivity of growth. The mutant also showed very high sensitivity to other antibiotics, such as macarbomycin, midecamycin, rifampin, and bacitracin. The mutation was recessive to the wild type and was mapped at about 4 min on the E. coli chromosome between fhuA and metD. The mutation caused rapid release into the medium of periplasmic enzymes such as RTEM penicillinase but practically no cytoplasmic enzyme when cells grown at 30 degrees C were transferred to 37 or 42 degrees C. Electron microscopic observations showed many large double-layered vesicles attached to the surface of cells incubated at 42 degrees C. We conclude that the mutant had a mutation that caused a temperature-dependent defect in the outer membrane structure or its assembly (named an oms mutation). The omsA mutant may be useful for production of periplasmic proteins, which it releases into the culture medium on shift up of temperature.  相似文献   

5.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43°C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20°C, but in a liquid crystalline state when cells were grown at 37 and 43°C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

6.
Growth of Pseudomonas aeruginosa PAO1 at 15 to 45 degrees C in tryptic soy broth resulted in changes in the lipids, lipopolysaccharides (LPSs), and outer membrane proteins of the cells. Cells grown at 15 degrees C contained, relative to those cultivated at 45 degrees C, increased levels of the phospholipid fatty acids hexadecenoate and octadecenoate and reduced levels of the corresponding saturated fatty acids. Furthermore, the lipid A fatty acids also showed thermoadaptation with decreases in dodecanoic and hexadecanoic acids and increases in the level of 3-hydroxydecanoate and 2-hydroxdodecanoate as the growth temperature decreased. In addition, LPS extracted from cells cultivated at the lower temperatures contained a higher content of long-chain S-form molecules than that isolated from cells grown at higher temperatures. On the other hand, the percentage of LPS cores substituted with side-chain material decreased from 37.6 mol% at 45 degrees C to 19.3 mol% at 15 degrees C. The outer membrane protein profiles indicated that at low growth temperatures there was an increase in a polypeptide with an apparent molecular weight of 43,000 and decreases in the content of 21,000 (protein H1)- and 27,500-molecular-weight proteins.  相似文献   

7.
We have examined the production of the outer membrane proteins of the primary and secondary forms of Xenorhabdus nematophilus during exponential- and stationary-phase growth at different temperatures. The most highly expressed outer membrane protein of X. nematophilus was OpnP. The amino acid composition of OpnP was very similar to those of the porin proteins OmpF and OmpC of Escherichia coli. N-terminal amino acid sequence analysis revealed that residues 1 to 27 of the mature OpnP shared 70 and 60% sequence identities with OmpC and OmpF, respectively. These results suggest that OpnP is a major porin protein in X. nematophilus. Three additional proteins, OpnA, OpnB, and OpnS, were induced during stationary-phase growth. OpnB was present at a high level in stationary-phase cells grown at 19 to 30 degrees C and was repressed in cells grown at 34 degrees C. OpnA was optimally produced at 30 degrees C and was not present in cells grown at lower and higher temperatures. The production of OpnS was not dependent on growth temperature. In contrast, another outer membrane protein, OpnT, was strongly induced as the growth temperature was elevated from 19 to 34 degrees C. In addition, we show that the stationary-phase proteins OpnA and OpnB were not produced in secondary-form cells.  相似文献   

8.
Salmonella typhimurium containing specific genes coding for either temperature-sensitive (TS) 3-deoxy-D-manno-octulosonate (KDO) 8-phosphate synthetase or TS cytidine monophosphate-KDO synthetase grow normally when incubated at 30 degrees C and are resistant to C-mediated killing. However, bacteria become avirulent and sensitive to C-mediated killing upon thermal inhibition of TS KDO-8-phosphate synthetase (incubation at 38 degrees C) or TS cytidine monophosphate-KDO synthetase (incubation at 42 degrees C). Such thermal inhibition concurrently causes synthesis of an altered outer membrane which we now show is the site that renders cells susceptible to C-mediated killing. After incubation of cells in serum, the altered outer membrane area contains C9 in a trypsin-resistant state and membrane attack complex (MAC) lesions observable by electron microscopy. Trypsin-resistant C9 and MAC lesions were also observed in the inner membrane fraction from such serum-treated cells. In contrast, little C9 and few MAC lesions were associated with unaltered outer membrane areas present on these same serum treated cells. Control cells, grown at 30 degrees C and treated with serum (1) bound one-fifth as much C9 as was bound to cells incubated at 42 degrees C, (2) contained only a rare MAC lesion in the outer membrane, and (3) no observable MAC lesions in the inner membrane. We conclude that the altered outer membrane area is the site that renders cells susceptible to insertion of the MAC into both the outer and inner membrane resulting in cell death.  相似文献   

9.
The protein composition of the outer membrane of Yersinia pestis grown at 26 and at 37 degrees C was examined. The outer membrane was isolated by isopycnic sucrose density centrifugation, and its degree of purity was determined with known inner and outer membrane components. Using two-dimensional gel electrophoresis, we identified a large number of heat-modifiable proteins in the outer membrane of cells grown at either incubation temperature. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of heated preparations indicated five proteins in the outer membrane of 37 degrees C-grown cells not evident in 26 degrees C-grown cells. Differences in the protein composition of the outer membrane due to the stage of growth were evident at both 26 degrees C and 37 degrees C, although different changes were found at each temperature. When cell envelopes were examined for the presence of peptidoglycan-associated proteins, no differences were seen as a result of stage of growth. Envelopes from 26 degrees C-grown cells yielded two peptidoglycan-associated proteins, E and J. Cells grown at 37 degrees C, however, also contained an additional protein (F) which was not found in either the bound or free form 26 degrees C. The changes in outer membrane protein composition in response to incubation temperature may relate to known nutritional and antigenic changes which occur under the same conditions.  相似文献   

10.
Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C). At 30 degrees C acyl chain order was highest in PE, followed by the total lipid extract, PG, intact cells, and isolated inner membrane vesicles. Acyl chain order in E. coli PE and PG was much higher than in the corresponding dioleoylphospholipids. E. coli PE was found to maintain a bilayer organization up to about 60 degrees C, whereas in the total lipid extract as well as in intact E. coli cells bilayer destabilization occurred already at about 42 degrees C. It is proposed that the regulation of temperature at which the bilayer-to-non-bilayer transition occurs may be important for membrane functioning in E. coli. Addition of phenethyl alcohol did not affect the macroscopic lipid organization in E. coli cells or in the total lipid extract, but caused a large reduction in chain order of about 70% at 1 mol% of the alcohol in both membrane systems. It is concluded that while both increasing temperature and addition of phenethyl alcohol can affect membrane integrity, in the former case this is due to the induction of non-bilayer lipid structures, whereas in the latter case this is caused by an increase in membrane fluidity.  相似文献   

11.
Outer membrane permeability of Escherichia coli O157:H7 was determined by an in vivo kinetic model with the periplasmic enzyme alkaline phosphatase [Martinez et al. (1996) Biochemistry 35, 1179-1186]. p-Nitrophenyl phosphate (PNPP) substrate, added to intact bacteria, must diffuse through the outer membrane to reach the enzyme. At low substrate concentration the bacterium was in the perfectly reactive state where all molecules that entered the periplasm were captured and converted to product. Transmembrane diffusion was rate limiting, and the permeability of the outer membrane was determined from kinetic properties. The O157:H7 strain grown at 30 degrees C showed one-sixth the permeability of wild-type E. coli grown at 30 degrees C. Wild-type bacteria grown at >/=37 degrees C show a physiological response with a shift in expression of outer membrane porins that lowered permeability to PNPP by approximately 70%. The O157:H7 strain did not display this temperature-sensitive shift in permeability even though a change in porin expression could be visualized by staining intensity of Omp F and Omp C on acrylamide gels. Altered behavior of the O157:H7 membrane was also indicated by a several thousand-fold lower response to transformation relative to wild-type E. coli. Matrix-assisted laser desorption ionization time of flight mass spectrometry and electrospray ionization mass spectrometry confirmed the expression of the Omp F and Omp C variants that are unique to E. coli O157:H7. This reduced outer membrane permeability can contribute to enhanced resistance of O157:H7 to antimicrobial agents.  相似文献   

12.
Thermoplasma acidophilum, a mycoplasma-like organism, grows optimally at 56 degrees C and pH2. The low temperature extreme of growth is 37 degrees C. The plasma membrane of cells grown at 37 degrees C was isolated and characterized physicobiochemically. Membrane lipids which comprise 25% of the membrane dry weight consist mainly of two repetitively methyl-branched C40 side chains that were ether-linked to two glycerol molecules. The lipid structures were elucidated by combined gas chromatography-mass spectroscopy, direct probe mass spectroscopy and 13C NMR. 37 degrees C-grown cells contained lipids with 42% more pentane cyclization than the 56 degrees C-grown cells. In 37 degrees C-grown cells, phospholipid and serine content decreased by about 10% each, carbohydrate content increased by 5%. EPR studies demonstrated an increase in membrane lipid fluidity of 37 degrees C-grown cells with an upper transition temperature at 35 degrees C which was shifted down by 10 degrees C compared with cells grown at 56 degrees C. Membrane-bound ATPase activities also indicated similar changes upon adaptation. There is a close correlation between membrane fluidity and physiological functioning of this membrane-bound enzyme.  相似文献   

13.
Mutants of Escherichia coli defective in phosphatidylserine synthetase (pss) make less phosphatidylethanolamine than normal cells, and they are temperature sensitive for growth. We have isolated a new mutant, designated RA2021, which is better than previously available strains in that the residual phosphatidylethanolamine level approaches 25% after 4 h at 42 degrees C. The total amount of phospholipid normalized to the density of the culture is about the same in RA2021 (pss-21) as in the isogenic wild-type RA2000 (pss(+)). Consequently, there is a net accumulation of polyglycerophosphatides in the mutant, particularly of cardiolipin. The addition of 10 to 20 mM MgCl(2) to a culture of RA2021 prolongs growth under nonpermissive conditions and prevents loss of cell viability, but it does not eliminate the temperature-sensitive phenotype. Divalent cations, like Mg(2+), do not correct the phospholipid composition of the mutant, but may act indirectly by balancing the negative charges of phosphatidylglycerol and cardiolipin. To determine the effects of the pss mutation on membrane composition, we have examined the subcellular distribution of the polyglycerophosphatides that accumulate in these strains. All of the excess anionic lipids of RA2021 are associated with the envelope fraction and are distributed equally between the inner and outer membranes. The protein compositions of the isolated membranes do not differ significantly in the mutant and wild type. The fatty acid composition of RA2021 is almost the same as wild type at 30 degrees C, but there is more palmitic and cyclopropane fatty acid at 42 degrees C. These results demonstrate that the modification of the polar lipid composition observed in pss mutants affects both membranes and that cardiolipin, which is not ordinarily present in large quantities, can accumulate in the outer membrane when it is overproduced by the cell. The altered polar headgroup composition of the outer membrane in pss mutants may account, in part, for their hypersensitivity to the aminoglycoside antibiotics.  相似文献   

14.
Growth of Escherichia coli K1 strains at 15 degrees C results in a defect in the synthesis or assembly of the K1 polysialic acid capsule. Synthesis is reactivated in cells grown at 15 degrees C after upshift to 37 degrees C, and activation requires protein synthesis (Whitfield et al., J. Bacteriol. 159:321-328, 1984). Using this temperature-induced defect, we determined the molecular weights and locations of membrane proteins correlated with the expression of K1 (polysialosyl) capsular antigen. Pulse-labeling experiments demonstrated the presence of 11 proteins whose synthesis was correlated with capsule appearance at the cell surface. Using the differential solubility of inner and outer membranes in the detergent Sarkosyl, we localized five of the proteins in the outer membrane and four in the inner membrane. The subcellular location of two of the proteins was not determined. Five proteins appeared in the membrane simultaneously with the initial expression of the K1 capsule at the cell surface. One of these proteins, a 40,000-dalton protein localized in the outer membrane, was identified as porin protein K, which previously has been shown to be present in the outer membrane of encapsulated E. coli. The possible role of these proteins in the synthesis of the polysialosyl capsule is discussed.  相似文献   

15.
A temperature-sensitive mutant of Bacillus stearothermophilus, TS-13, was unable to grow above 58 degrees C, compared to 72 degrees C for the wild type. Actively growing TS-13 cells lysed within 2 h when exposed to a restrictive temperature of 65 degrees C. Peptidoglycan synthesis stopped within 10 to 15 min postshift before a shut down of other macromolecular syntheses. Composition of preexisting peptidoglycan was not altered, nor was new peptidoglycan of aberrant composition formed. No significant difference in autolysin activity was observed between the mutant and the wild type at 65 degrees C. Protoplasts of TS-13 cells were able to synthesize cell wall material at 52 degress C, but not at 65 degrees C. This wall material remained closely associated with the cell membrane at the outer surface of the protoplasts, forming small, globular, membrane-bound structures which could be visualized by electron microscopy. These structures reacted with fluorescent antibody prepared against purified cell walls. Production of this membrane-associated wall material could be blocked by bacitracin, which inhibited cell wall synthesis at the level of transport through the membrane. The data were in agreement with previous studies showing that at the restrictive temperature this mutant is unable to alter its membrane fatty acid and phospholipid composition with temperature such that it is not able to maintain a membrane lipid composition which permits normal membrane function at the restrictive temperature.  相似文献   

16.
Escherichia coli K1 synthesizes a polysialic acid capsule when grown at 37 but not 15 degrees C. The derangement in sialyl polymer synthesis appears to result from the inability of 15 degrees C membranes to synthesize or assemble a functional endogenous acceptor (Troy, F.A., and McCloskey, M.A. (1979) J. Biol. Chem. 254, 7377-7387). Membranes from cells grown at 15 degrees C spontaneously gained the ability to synthesize sialyl polymer after incubation at 33 degrees C for 2-4 h. The incubation-dependent activation of the endogenous synthesis of sialyl polymer in 15 degrees C membranes possessed two unusual features. First, the sialyltransferase was localized in a low density vesicle fraction (LDV; rho = 1.11 g/cm3). Second, this fraction catalyzed protein synthesis, and protein synthesis was required for activation. A study of the LDV fraction showed: 1) their light density resulted from a 5- to 8-fold enrichment in lipid phosphate to protein ratio and their sialyltransferase activity was enriched 40-fold compared with unfractionated total membranes; 2) they contained proteins characteristic of inner and outer membranes including leader peptidase and lipoprotein; 3) they constituted 8% of the mass of unfractionated total membranes yet contained all of the endogenous sialyltransferase activity in 15 degrees C membranes. In contrast, LDV from 37 degrees C grown cells accounted for 4.8% of the membrane mass and only 12.5% of the endogenous sialyltransferase activity; 4) they were multilamellar and averaged 0.7 mu in diameter. Based on these results, we believe the LDV fraction is of physiological importance in sialyl polymer synthesis. Growth at 15 degrees C allowed identification and study of the LDV fraction possibly because of the altered thermotropic properties of the membrane phospholipids that occur when E. coli is grown at low temperature.  相似文献   

17.
Formation and Ultrastructure of Extra Membranes in Escherichia coli   总被引:8,自引:6,他引:2       下载免费PDF全文
A temperature-sensitive strain of Escherichia coli (strain 0111a(1)) was shown to accumulate membranous structures at 40 C. These "extra membranes" appeared as vesicles or whorls (or both), depending on the time of growth at 40 C. After 2 hr of growth at 40 C, only vesicles were observed in E. coli 0111a(1) cells; both vesicles and whorls were apparent after 6 hr. The number of cells which contained both types of extra membrane reached a maximum value (75%) after 10 hr of growth at 40 C. Extra membrane production was also studied by using temperature shifts. In shift-up experiments, cells grown at 30 C into early stationary phase accumulated extra membrane after a shift to 40 C. The percentage of E. coli 0111a(1) cells containing extra membrane decreased significantly after a shift from 40 to 30 C. Phase- and electron-microscopic observations indicated that E. coli 0111a(1) cells grown at 40 C were larger than E. coli 0111: B(4) cells grown at either temperature. The ratio of optical density per cell and cell measurements obtained from quantitative electron microscopy confirmed that E. coli 0111a(1) cells grown at 40 C were about twice as large. Microdensitometer traces indicated that the dimension of a single membrane of either whorls or vesicles was 5.4 nm in peak-to-peak distance (8.8 nm total thickness).  相似文献   

18.
When Streptococcus salivarius was grown in batch culture in the presence of various Tween detergents, the fatty acid moiety of the detergent was incorporated into the lipids of its membrane. Tween 80 (containing primarily oleic acid) markedly stimulated the production of extracellular glucosyltransferase and also increased the degree of unsaturation of the membrane lipid fatty acids. The possibility that an increase in membrane unsaturated fatty acids promoted extracellular glucosyltransferase production was examined by growing cells at different temperatures in the presence or absence of Tween 80. The membrane lipids of cells grown at 30 degrees C, 37 degrees C and 40 degrees C without Tween 80 exhibited unsaturated/saturated fatty acid ratios of 2.06, 1.01 and 0.87 respectively. A significant increase in the production of extracellular glucosyltransferase was observed at 30 degrees C compared to cells grown at 40 degrees C. However, cells produced much more exoenzyme at all temperatures when grown with Tween 80. The results indicated that an increase in the unsaturated fatty acid content of the membrane lipids was not by itself sufficient to account for the stimulation of extracellular glucosyltransferase production by Tween 80, but that the surfactant also had to be present.  相似文献   

19.
Escherichia coli MsbA, the proposed inner membrane lipid flippase, is an essential ATP-binding cassette transporter protein with homology to mammalian multidrug resistance proteins. Depletion or loss of function of MsbA results in the accumulation of lipopolysaccharide and phospholipids in the inner membrane of E. coli. MsbA modified with an N-terminal hexahistidine tag was overexpressed, solubilized with a nonionic detergent, and purified by nickel affinity chromatography to approximately 95% purity. The ATPase activity of the purified protein was stimulated by phospholipids. When reconstituted into liposomes prepared from E. coli phospholipids, MsbA displayed an apparent K(m) of 878 microm and a V(max) of 37 nmol/min/mg for ATP hydrolysis in the presence of 10 mm Mg(2+). Preincubation of MsbA-containing liposomes with 3-deoxy-d-mannooctulosonic acid (Kdo)(2)-lipid A increased the ATPase activity 4-5-fold, with half-maximal stimulation seen at 21 microm Kdo(2)-lipid A. Addition of Kdo(2)-lipid A increased the V(max) to 154 nmol/min/mg and decreased the K(m) to 379 microm. Stimulation was only seen with hexaacylated lipid A species and not with precursors, such as diacylated lipid X or tetraacylated lipid IV(A). MsbA containing the A270T substitution, which renders cells temperature-sensitive for growth and lipid export, displayed ATPase activity similar to that of the wild type protein at 30 degrees C but was significantly reduced at 42 degrees C. These results provide the first in vitro evidence that MsbA is a lipid-activated ATPase and that hexaacylated lipid A is an especially potent activator.  相似文献   

20.
Outer-membrane damage in sublethally heated Escherichia coli K-12.   总被引:10,自引:0,他引:10  
Exponentially grown cells of Escherichia coli K-12 heated at 48 degrees C in potassium phosphate buffer at pH 7.0 were structrually injured before death. During heating for 60 min about 20% of the cellular lipopolysaccharide (LPS) was released from the outer membrane into the heating medium. Removal of 30% of the cellular LPS, by washing the cells in buffer containing ethylenediaminetetraacetic acid (EDTA), caused no significant increase in the rate of death and structural injury produced by heating. The addition of EDTA to the heating medium produced only a slight increase in the rate of thermal death but a large increase in the rate of structural injury. By a combination of heating at 48 degrees C and washing with EDTA, a maximum of 50% of the LPS was released from cells. These results taken together suggest that structural injury and loss of LPS are not the direct causes of death. The addition of 5 m M Mg2+ to the heating medium protected the cells from death and structural injury caused by heating at 48 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号