首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Free cholesterol is a potent regulator of lipid transfer protein function   总被引:6,自引:0,他引:6  
This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface.  相似文献   

2.
We examined whether postprandial (PP) chylomicrons (CMs) can serve as vehicles for transporting cholesterol from endogenous cholesterol-rich lipoprotein (LDL+HDL) fractions and cell membranes to the liver via lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. During incubation of fresh fasting and PP plasma containing [(3)H]cholesteryl ester (CE)-labeled LDL+HDL, both CMs and VLDL served as acceptors of [(3)H]CE or cholesterol from LDL+HDL. The presence of CMs in PP plasma suppressed the ability of VLDL to accept [(3)H]CE from LDL+HDL. In reconstituted plasma containing an equivalent amount of triglycerides from isolated VLDL or CMs, a CM particle was about 40 times more potent than a VLDL particle in accepting [(3)H]CE or cholesterol from LDL+HDLs. When incubated with red blood cells (RBCs) as a source for cell membrane cholesterol, the cholesterol content of CMs, VLDL, LDL, and HDL in PP plasma increased by 485%, 74%, 13%, and 30%, respectively, via LCAT and CETP activities. The presence of CMs in plasma suppressed the ability of endogenous lipoproteins to accept cholesterol from RBCs. Our data suggest that PP CMs may play an important role in promoting reverse cholesterol transport in vivo by serving as the preferred ultimate vehicle for transporting cholesterol released from cell membranes to the liver via LCAT and CETP.  相似文献   

3.
Density gradient ultracentrifugation was used to isolate and characterize the plasma lipoproteins from African green monkeys before and 24 and 48 h after subcutaneous injection of 300 micrograms/kg lipopolysaccharide (LPS) to induce an acute phase response. Compared with 0 h values, reductions occurred in plasma cholesterol (39%), high density lipoprotein (HDL) cholesterol (54%), lecithin:cholesterol acyltransferase (LCAT) activity (55%), and post-heparin plasma lipase activity (68%) 48 h after LPS injection while plasma triglyceride concentrations increased 700%. Cholesterol distribution among lipoproteins shifted from 7 to 41% in very low density lipoproteins (VLDL), 65 to 38% in low density lipoproteins (LDL), and 28 to 21% in HDL after LPS injection. At 48 h after LPS injection, all lipoprotein classes were relatively enriched in phospholipid and triglyceride and depleted of cholesteryl ester. The plasma concentration of all chemical constituents in VLDL was increased 3-9-fold within 48 h after LPS injection. By negative stain electron microscopy, HDL were discoidal in shape while VLDL and LDL appeared to have excess surface material present. Even though total HDL protein concentration in plasma was unaffected, the plasma mass of the smallest HDL subfractions (HDL3b,c) doubled while the mass of intermediate-sized subfractions (HDL3a) was dramatically decreased within 24 h after treatment. HDL became enriched in apoE, acquired apoSAA, and became depleted of apoA-I, A-II, and Cs by 48 h after LPS injection while apoB-100 remained the major apoprotein of VLDL and LDL. We conclude that administration of LPS to monkeys prevents normal intravascular metabolism of lipoproteins and results in the accumulation of relatively nascent forms of lipoproteins in plasma. These immature lipoproteins resemble those isolated from the recirculating perfusion of African green monkey livers, which are relatively deficient of LCAT activity and those isolated from the plasma of patients with familial LCAT deficiency.  相似文献   

4.
Lecithin: Cholesterol Acyltransferase (LCAT) esterified relatively small amounts of cholesterol from very low density lipoproteins (VLDL), low density lipoproteins (LDL) or high density lipoproteins (HDL) in the presence of 5% human serum albumin (HSA). On the other hand, in the presence of very high density (>1.225 g/ml) plasma fraction (F-4), the enzyme esterified cholesterol from VLDL at considerably higher rates than from LDL or HDL. VLDL together with some component present in the very high density plasma fraction (F-4) may thus provide a highly efficient complex resulting in a favorable configuration of substrate lipids for the enzyme.  相似文献   

5.
The action of a bacterial acyltransferase similar in overall reaction mechanism to the plasma enzyme lecithin:cholesterol acyltransferase (LCAT) has been studied using normal plasma and lipoproteins and plasma from LCAT-deficient patients. The microbial enzyme (GCAT) catalyzed acyl transfer using phosphatidylcholine and cholesterol in all of the lipoprotein fractions, presumably because it has no apolipoprotein cofactor. In addition, the enzyme was capable of hydrolyzing cholesteryl ester in lipoproteins but not in small unilamellar vesicles nor in micellar dispersions containing low amounts of Triton X-100. This suggests that cholesteryl ester is exposed on the surface of lipoprotein particles or that it may be transferred there quickly from the interior. Although considerable interconversion of radiolabeled cholesterol and cholesteryl ester could be demonstrated upon treatment of normal plasma or lipoproteins with the enzyme, there was little change in the actual amount of either steroid. This indicates that the rate of cholesteryl ester formation is very similar to the rate of hydrolysis. The relative proportions of cholesterol and cholesteryl ester in normal plasma are therefore near the equilibrium ratio for the reaction carried out by GCAT, or the ratio is controlled by the properties of the lipoproteins themselves. During reaction with the microbial acyltransferase, the ratio of cholesterol to cholesteryl ester in plasma from LCAT-deficient patients was reduced substantially, suggesting that the enzyme may have some practical applications.  相似文献   

6.
The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [3H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [3H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [3H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles.  相似文献   

7.
8.
Our previous studies have indicated that lecithin-cholesterol acyltransferase (LCAT) contributes significantly to the apoB lipoprotein cholesteryl ester (CE) pool. Cholesterol esterification rate (CER) in apoA-I(-)(/)(-) apoE(-)(/)(-) mouse plasma was <7% that of C57Bl/6 (B6) mouse plasma, even though apoA-I(-)(/)(-) apoE(-)(/)(-) plasma retained (1)/(3) the amount of B6 LCAT activity. This suggested that lack of LCAT enzyme did not explain the low CER in apoA-I(-)(/)(-) apoE(-)(/)(-) mice and indicated that apoE and apoA-I are the only major activators of LCAT in mouse plasma. Deleting apoE on low-density lipoprotein (LDL) reduced CER (1% free cholesterol (FC) esterified/h) compared to B6 (6% FC esterified/h) and apoA-I(-)(/)(-) (11% FC esterified/h) LDL. Similar sized LDL particles from all four genotypes were isolated by fast protein liquid chromatography (FPLC) after radiolabeling with [(3)H]-free cholesterol (FC). LDLs (1 microg FC) from each genotype were incubated with purified recombinant mouse LCAT; LDL particles from B6 and apoA-I(-)(/)(-) plasma were much better substrates for CE formation (5.7% and 6.3% CE formed/30 min, respectively) than those from apoE(-)(/)(-) and apoE(-)(/)(-) apoA-I(-)(/)(-) plasma (1.2% and 1.1% CE formed/30 min). Western blot analysis showed that the amount of apoA-I on apoE(-)(/)(-) LDLs was higher compared to B6 LDL. Adding apoE to incubations of apoA-I(-)(/)(-) apoE(-)(/)(-) very low density lipoprotein (VLDL) resulted in a 3-fold increase in LCAT CER, whereas addition of apoA-I resulted in a more modest 80% increase. We conclude that apoE is a more significant activator of LCAT than apoA-I on mouse apoB lipoproteins.  相似文献   

9.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

10.
Oral nicotine impairs clearance of plasma low density lipoproteins   总被引:1,自引:0,他引:1  
The effect of chronic oral nicotine intake on plasma low density lipoprotein (LDL) clearance, lipid transfer protein, and lecithin:cholesterol acyltransferase (LCAT) was examined in male atherosclerosis susceptible squirrel monkeys. Eighteen yearling primates were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine monkeys given liquid diet supplemented with nicotine at 6 mg/kg body wt/day for a two-year period. Averaged over 24 months of treatment, animals in the Nicotine group had significantly higher levels of plasma and LDL cholesterol compared to Controls while plasma LCAT activity was similar for both groups. Following simultaneous injection of 3H LDL and 14C high density lipoprotein (HDL) cholesteryl ester (CE), removal of the latter was not altered by oral nicotine while plasma clearance of 3H LDL was dramatically delayed in Nicotine monkeys. Transfer of 14C HDL CE to very low density lipoprotein (VLDL)-LDL particles was greatly accelerated in the Nicotine group vs Controls while the reciprocal movement of 3H LDL CE to HDL was only higher in experimental animals at two time points following injection of the isotopes. Results from this study provide evidence that one major detrimental effect of long-term oral nicotine use is an increase in the circulating pool of atherogenic LDL which is due to: 1) accelerated transfer of lipid from HDL; and 2) impaired clearance of LDL from the plasma compartment. Diminished removal of LDL is of particular importance because an extended residence time of these particles in circulation would increase the likelihood of their deposition in the arterial wall.  相似文献   

11.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

12.
To examine the role that lipoprotein charge plays in cholesterol metabolism in vivo, we characterized the effects of an intravenous injection of 40 micromol of an uncharged phospholipid (phosphatidylcholine, PC) or an anionic phospholipid (phosphatidylinositol, PI) into fasted rabbits. PC injection had a negligible effect on lipoprotein charge and composition, similar to that observed in a saline-injected animal. In contrast, PI injection caused a significant increase in the net negative surface charge of all lipoproteins after only 10 min, followed by a gradual return to normal by 24 h. Lipoprotein compositional analysis showed that PI caused a significant increase of cholesteryl ester (CE) and cholesterol (FC) in the VLDL pool by 3 h, with no changes in VLDL-triglyceride content. While the bulk of the plasma CE was located in the HDL pool in the PC-injected animals, in the PI animals, VLDL became the major CE storage compartment. No major changes in the levels or composition of HDL or LDL were evident over the 24-h turnover period. Co-injection of [(3)H]FC revealed a 30-fold greater rate of clearance of the labeled cholesterol from the PI-injected rabbit plasma. In addition, the rate of cholesterol esterification by lecithin:cholesterol acyltransferase was almost completely inhibited in the PI animals. In summary, a bolus injection of PI into rabbits appears to enhance the mobilization of cellular sterol and promote a rapid clearance of both FC and CE from the plasma compartment. The data show that lipoprotein charge can affect cholesterol transport and that this process can be selectively manipulated.  相似文献   

13.
Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme involved in lipoprotein metabolism. It mediates the transesterification of free cholesterol to cholesteryl ester in an apoprotein A-I-dependent process. We have isolated purified LCAT from human plasma using anion-exchange chromatography and characterized the extracted LCAT in terms of its molecular weight, molar absorption coefficient, and enzymatic activity. The participation of LCAT in the oxidation of very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) was examined by supplementing lipoproteins with exogenous LCAT over a range of protein concentrations. LCAT-depleted lipoproteins were also prepared and their oxidation kinetics examined. Our results provide evidence for a dual role for LCAT in lipoprotein oxidation, whereby it acts in a dose-responsive manner as a potent pro-oxidant during VLDL oxidation, but as an antioxidant during LDL oxidation. We believe this novel pro-oxidant effect may be attributable to the LCAT-mediated formation of oxidized cholesteryl ester in VLDL, whereas the antioxidant effect is similar to that of chain-breaking antioxidants. Thus, we have demonstrated that the high-density lipoprotein-associated enzyme LCAT may have a significant role to play in lipoprotein modification and hence atherogenesis.  相似文献   

14.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

15.
Administration of alpha-naphthylisothiocyanate (ANIT) to rats induces changes to plasma lipids consistent with cholestasis. We have previously shown (J. Lipid Res. 37 (1996) 1086) that animals treated with ANIT accumulate large amounts of free cholesterol (FC) and phospholipid (PL)-rich cholestatic lipoproteins in the LDL density range by 48 h. This lipid was cleared by 120 h through apparent movement into HDL with concomitant cholesteryl ester (CE) production. It was hypothesised that the clearance was mediated through the movement of the PL and FC into apolipoprotein A-I (apo A-I) containing lipoproteins followed by LCAT esterification to form CE. To test this hypothesis, rats overexpressing various amounts of human apo A-I (TgR[HuAI] rats) were treated with ANIT (100 mg/kg) and the effect of plasma apo A-I concentration on plasma lipids and lipoprotein distribution was examined. In untreated TgR[HuAI] rats, human apo A-I levels were strongly correlated to plasma PL (r(2)=0. 94), FC (r(2)=0.93) and CE (r(2)=0.90), whereas in ANIT-treated TgR[HuAI] rats, human apo A-I levels were most strongly correlated to CE levels (r(2)=0.80) and an increased CE/FC ratio (r(2)=0.62) and the movement of cholestatic lipid in the LDL to HDL. Since LCAT activity was not affected by ANIT treatment, these results demonstrate that the ability of LCAT to esterify the plasma FC present in cholestatic liver disease is limited by in vivo apo A-I activation of the cholestatic lipid and not by the catalytic capacity of LCAT.  相似文献   

16.
The first step in the reaction of lecithin cholesterol acyltransferase (LCAT) with lipoproteins is the interfacial binding of the enzyme to the lipid surfaces. In this study the equilibrium dissociation constants (Kds) for the interaction of pure human plasma LCAT with LDL, HDL2, HDL3, and a reconstituted discoidal HDL (rHDL) were determined by the activity-inhibition method. In addition, enzyme kinetics were measured with each of the lipoprotein substrates. Based on phospholipid concentrations, the Kd values (0.9 x 10(-5) to 4.6 x 10(-5) M) increased in the order rHDL = HDL3 相似文献   

17.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

18.
Plasma lecithin:cholesterol acyltransferase (LCAT) activity is increased during the clearance phase of alimentary lipemia induced by a high-fat test meal in normal subjects. Ultracentrifugal fractionation of high density lipoproteins (HDL) into HDL(2), HDL(3), and very high density (VHD) subfractions followed by analyses of lipid and protein components has been accomplished at intervals during alimentary lipemia to seek associations with enzyme changes. HDL(2) lipids and protein increased substantially, characterized primarily by enrichment with lecithin. HDL(3), which contain the main LCAT substrates, revealed increased triglycerides and generally reduced cholesteryl esters which were reciprocally correlated, demonstrating a phenomenon previously observed in vitro by others. Both changes correlated with LCAT activation, but partial correlation analysis indicated that ester content is primarily related to triglycerides rather than LCAT activity. The VHD cholesteryl esters and lysolecithin were also reduced. Plasma incubation experiments with inactivated LCAT showed that alimentary lipemic very low density lipoproteins (VLDL) could reduce levels of cholesteryl esters in HDL by a nonenzymatic mechanism. In vitro substitution of lipemic VLDL for postabsorptive VLDL resulted in enhanced reduction of cholesteryl esters in HDL(3) and VDH, but not in HDL(2), during incubation. Nevertheless, augmentation of LCAT activity did not result, indicating that cholesteryl ester removal from substrate lipoproteins is an unlikely explanation for activation. Since VHD and HDL(3), which contain the most active LCAT substrates, were also most clearly involved in transfers of esters to VLDL and low density lipoproteins, the suggestion that LCAT product lipoproteins are preferentially involved in nonenzymatic transfer and exchange is made. The main determinant of ester transfer, however, appears to be the level of VLDL, both in vitro and in vivo. Rose, H. G., and J. Juliano. Regulation of plasma lecithin: cholesteryl acyltransferase in man. III. Role of high density lipoprotein cholesteryl esters in the activating effect of a high-fat test meal.  相似文献   

19.
Cholesterol stored in human adipose tissue is derived from circulating lipoproteins. To delineate the cholesterol transport function of LDL and HDL, the movement of radiolabelled esterified cholesterol and free cholesterol from labelled LDL and HDL to human adipocytes was examined in the present study. LDL and HDL were enriched and labelled in esterified cholesterol with [14C]cholesterol by the action of plasma lipid transfer proteins and lecithin-cholesterol acyltransferase. Doubly labelled (3H,14C) LDL and HDL were prepared by exchanging free [3H]cholesterol into the 14C-labelled lipoproteins. 14C-labelled lipoprotein and 3H-labelled lipoprotein were also prepared separately and mixed to yield a mixed doubly labelled lipoprotein. Relative to the total amount added, proportionally more free than esterified cholesterol was transferred to the adipocytes upon incubation with any doubly labelled LDL and HDL. The calculated mass of free and esterified cholesterol transferred, however, varied with different labelled lipoproteins. 3H- and 14C-labelled LDL or HDL transferred 2-3-fold more esterified than free cholesterol while the reverse occurred with the mixed doubly labelled LDL or HDL. Thus, free cholesterol-depleted particles preferentially transferred cholesterol ester to the fat cells. In the presence of the homologous unlabelled native lipoprotein, the transfers of free and esterified cholesterol from labelled LDL or HDL were specifically inhibited. Selective transfer of esterified cholesterol relative to apoprotein was also observed when esterified cholesterol uptake from both LDL and HDL was assayed along with the binding of 125I-labelled lipoprotein. The cellular accumulation of cholesterol ether-labelled HDL (a non-hydrolyzable analogue of cholesterol ester) exceeded that of cholesterol ester consistent with significant hydrolysis of the latter physiological substrate. These results demonstrate preferential transfer of free cholesterol and esterified cholesterol over apoprotein for both LDL and HDL in human adipocytes. Furthermore, the data suggest that the cholesterol ester transport function of LDL and HDL can be enhanced by free cholesterol depletion and cholesterol ester enrichment of the particles, and affirms a role for adipose tissue in the metabolism of lipid-modified lipoproteins.  相似文献   

20.
Six mouse monoclonal antibodies against rabbit apolipoprotein E (apo E) have been developed. Of these monoclonal antibodies, clone 5 revealed a high affinity for purified apo E, very low density lipoprotein (VLDL) and beta-VLDL. This monoclonal antibody was used to prepare an immunoaffinity column. Coupled to Sepharose 4B, this antibody allowed complete removal of lipoproteins containing apo E from plasma of New Zealand white (NZW) rabbits; 62, 46, 14, and 3% of VLDL-, IDL-, LDL-, and HDL-protein, respectively, were bound to the anti-apo E affinity column. The bound VLDL was significantly rich in free cholesterol (FC) and cholesteryl esters (CE) relative to the unbound VLDL, whereas bound IDL, LDL and HDL were significantly rich in FC only. All of the bound fractions were characterized by significantly increased ratios of FC/phospholipids (PL). These results indicate that the two lipoprotein populations with and without apo E have different lipid compositions. The relatively high content of cholesterol in lipoproteins containing apo E suggests a contribution of apo E to plasma cholesterol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号