首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) catalyzes the 17β-oxidation/reduction of C18- and C19-steroids in a variety of tissues. Three human genes encoding isozymes of 17β-HSD, designated 17β-HSD types 1, 2 and 3 have been cloned. 17β-HSD type 1 (also referred to as estradiol 17β-dehydrogenase) catalyzes the conversion of estrone to estradiol, primarily in the ovary and placenta. The 17β-HSD type 2 is expressed to high levels in the liver, secretory endometrium and placenta. The type 2 isozyme catalyzes the oxidation of androgens and estrogens equally efficiently. Also, the enzyme possesses 20-HSD activity demonstrated by its ability to convert 20-dihydro-progesterone to progesterone. Testicular 17β-HSD type 3 catalyzes the conversion of androstenedione to testosterone, dehydroepiandrosterone to 5-androstenediol and estrone to estradiol. The 17β-HSD3 gene is mutated in male pseudohermaphrodites with the genetic disease 17β-HSD deficiency.  相似文献   

2.
Enzymes with 17β-hydroxysteroid dehydrogenase (17β-HSD) activity catalyse reactions between the low-active female sex steroid, estrone, and the more potent estradiol, for example. 17β-HSD activity is essential for glandular (endocrine) sex hormone biosynthesis, but it is also present in several extra-gonadal tissues. Hence, 17β-HSD enzymes also take part in local (intracrine) estradiol production in the target tissues of estrogen action. Four distinct 17β-HSD isozymes have been characterized so far, and the data strongly suggests that different 17β-HSD isozymes have distinct roles in endocrine and intracrine metabolism of sex steroids. Current data suggest that 17β-HSD type 1 is the principal isoenzyme involved in glandular estradiol production both in humans and rodents. During ovarian follicular development and luteinization, rat 17β-HSD type 1 is regulated by gonadotropins, and the effects of gonadotropins are modulated by steroid hormones and paracrine growth factors. Human 17β-HSD type 1 favors the reduction reaction, thereby converting estrone to estradiol both in vitro and in cultured cells. Hence, the enzymatic properties of the enzyme are also in line with its suggested role in estradiol biosynthesis. Interestingly, 17β-HSD type 1 is also expressed in certain target tissues of estrogen action such as normal and malignant human breast and endometrium. Hence, 17β-HSD type 1 could be one of the factors leading to a relatively high tissue/plasma ratio of estradiol in breast cancer tissues of postmenopausal women. We conclude that 17β-HSD type 1 has a central role in regulating the circulating estradiol concentration as well as its local production in estrogen target cells.  相似文献   

3.
Estradiol is active in proliferation and differentiation of sex-related tissues like ovary and breast. Glandular steroid metabolism was for a long time believed to dominate the estrogenic milieu around any cell of the organism. Recent reports verified the expression of estrogen receptors in “non-target” tissues as well as the extraglandular expression of steroid metabolizing enzymes. Extraglandular steroid metabolism proved to be important in the brain, skin and in stromal cells of hormone responsive tumors. Aromatase converts testosterone into estradiol and androstenedione into estrone, thereby activating estrogen precursors. The group of 17β-hydroxysteroid dehydrogenases catalyzes the oxidation and/or reduction of the forementioned compounds, e.g. estradiol/estrone, thereby either activating or inactivating estradiol. Aromatase is expressed and regulated in the human THP 1 myeloid leukemia cell line after vitamin D/GMCSF-propagated differentiation. Aromatase expression is stimulated by dexamethasone, phorbolesters and granulocyte/macrophage stimulating factor (GMCSF). Exons I.2 and I.4 are expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. Vitamin D-differentiated THP 1 cells produce a net excess of estradiol in culture supernatants, if testosterone is given as aromatase substrate. In contrast, the 17β-hydroxysteroid dehydrogenase type 4 (17β-HSD 4) is abundantly expressed in unstimulated THP 1 cells and is further stimulated by glucocorticoids (2-fold). The expression is unchanged after vitamin D/GMCSF-propagated differentiation. 17β-HSD 4 expression is not altered by phorbolester treatment in undifferentiated cells but is abolished after vitamin D-propagated differentiation along with downregulation of β-action. Protein kinase C activation therefore appears to dissociate the expression of aromatase and 17β-HSD 4 in this differentiation stage along the monocyte/phagocyte pathway of THP 1 myeloid cells. The expression of steroid metabolizing enzymes in myeloid cells is able to create a microenvironment which is uncoupled from dominating systemic estrogens. These findings may be relevant in the autocrine, paracrine or iuxtacrine cellular crosstalk of myeloid cells in their respective states of terminal differentiation, e.g. in bone metabolism and inflammation.  相似文献   

4.
An overview of the application of kinetic methods to the delineation of 17β-hydroxysteroid dehydrogenase (17β-HSD) heterogeneity in mammalian tissues is presented. Early studies of 17β-HSD activity in animal liver and kidney subcellular fractions were suggestive of multiple forms of the enzyme. Subsequently, detailed characterization of activity in cytosol and subcellular membrane fractions of human placenta, with particular emphasis on inhibition kinetics, yielded evidence of two kinetically-differing forms of 17β-HSD in that organ. Gene cloning and transfection experiments have confirmed the identity of these two proteins as products of separate genes. 17β-HSD type 1 is a cytosolic enzyme highly specific for C18 steroids such as 17β-estradiol (E2) and estrone (E1). 17β-HSD type 2 is a membrane bound enzyme reactive with testosterone (T) and androstenedione (A), as well as E2 and E1. Useful parameters for the detection of multiple forms of 17β-HSD appear to be the E2/T activity ratio, NAD/NADP activity ratios, steroid inhibitor specificity and inhibition patterns over a wide range of putative inhibitor concentrations. Evaluation of these parameters for microsomes from samples of human breast tissue suggests the presence of 17β-HSD type 2. The 17β-HSD enzymology of human testis microsomes appears to differ from placenta. Analysis of human ovary indicates granulosa cells are particularly enriched in the type 1 enzyme with type 2-like activity in stroma/theca. Mouse ovary appears to contain forms of 17β-HSD which differ from 17β-HSD type 1 and type 2 in their kinetic properties.  相似文献   

5.
The insert of 1278 bp containing the entire coding region of cDNA encoding human 17β-hydroxysteroid dehydrogenase (17β-HSD) was inserted into a pHS1 vector and expressed in HeLA human cervical carcinoma cells and COS-1 monkey kidney tumor cells. Western blot analysis indicated that the expressed protein migrates at the same position as the purified enzyme and is recognized by the antibody raised against purified human placental 17β-HSD. The expressed enzyme efficiently catalyzes the interconversion of estrone and estradiol while dehydroepiandrosterone and 5-androstene-3β,17β-diol are interconverted at a lower rate. The present data suggest the existence of two 17β-HSDs.  相似文献   

6.
The interconversion of estrone (E1) and 17β-estradiol (E2), androstenedione (4-ene-dione) and testosterone (T), as well as dehydroepiandrosterone and androst-5-ene-3β,17β-diol is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD). The enzyme 17β-HSD thus plays an essential role in the formation of all active androgens and estrogens in gonadal as well as extragonadal tissues. The present study investigates the tissue distribution of 17β-HSD activity in the male and female rat as well as in some human tissues and the distribution of 17β-HSD mRNA in some human tissues. Enzymatic activity was measured using 14C-labeled E1, E2, 4-ene-dione and T as substrates. Such enzymatic activity was demonstrated in all 17 rat tissues examined for both androgenic and estrogenic substrates. While the liver had the highestlevel of 17β-HSD activity, low but significant levels of E2 as well as T formation were found in rat brain, heart, pancreas and thymus. The oxidative pathway (E2→E1, T→4-ene-dione) was favored over the reverse reaction in almost all rat tissues while in the human, almost equal rates were found in most of the 15 tissues examined. The widespread distribution of 17β-HSD in rat and human tissues clearly indicates the importance of this enzyme in peripheral sex steroid formation or intracrinology.  相似文献   

7.
Estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD) plays a pivotal role in the synthesis of estrogens. We overproduced human placental estrogenic 17β-HSD using a baculovirus expression system for the study of the enzyme mechanism. A cDNA encoding the entire open reading frame of human 17β-HSD was inserted into the genome of Autographa californica nuclear polyhedrosis virus and expressed in Spodoptera frugiperda (Sf9) insect cells. Metabolic labeling and Western blot analysis using polyclonal antibodies raised against native human 17β-HSD indicated that a molecule with an apparent mass of 35 kDa was maximally expressed 60 h after infection. At that time interval, intracellular 17β-HSD activity reached 0.26 U/mg of protein in crude homogenate, about 70 times the level measured in human placenta. Purification of recombinant 17β-HSD was achieved by a single affinity fast liquid protein chromatography step yielding 24 mg of purified 17β-HSD protein per liter of suspension culture, with a specific activity of about 8 μmol/min/mg of protein for conversion of estradiol into estrone, at pH 9.2. In addition, the recombinant protein purified from infected Sf9 cells was assembled as a dimer with molecular mass and specific activity identical to those of the enzyme purified directly from placenta. The present data show that the baculovirus expression system can provide active 17β-HSD that is functionally identical to its natural counterpart and easy to purify in quantities suitable for its physico-chemical studies.  相似文献   

8.
Androgen aromatase was found to also be estrogen 2-hydroxylase. The substrate specificity among androgens and estrogens and multiplicity of aromatase reactions were further studied. Through purification of human placental microsomal cytochrome P-450 by monoclonal antibody-based immunoaffinity chromatography and gradient elution on hydroxyapatite, aromatase and estradiol 2-hydroxylase activities were co-purified into a single band cytochrome P-450 with approx. 600-fold increase of both specific activities, while other cytochrome P-450 enzyme activities found in the microsomes were completely eliminated. The purified P-450 showed Mr of 55 kDa, specific heme content of 12.9 ± 2.6 nmol·mg−1 (±SD, N = 4), reconstituted aromatase activity of 111 ± 19 nmol·min−1·mmg−1 and estradiol 2-hydroxylase activity of 5.85 ± 1.23 nmol·min−1·mg−1. We found no evidence for the existence of catechol estrogen synthetase without concomitant aromatase activity. The identity of the P-450 for the two different hormone synthetases was further confirmed by analysis of the two activities in the stable expression system in Chinese hamster ovarian cells transfected with human placental aromatase cDNA, pH β-Aro. Kinetic analysis of estradiol 2-hydroxylation by the purified and reconstituted aromatase P-450 in 0.1 M phosphate buffer (pH 7.6) showed Km of 1.58 μM and Vmax of 8.9 nmol·min−1·mg−1. A significant shift of the optimum pH and Vmax, but not the Km, for placental estrogen 2-hydroxylase was observed between microsomal and purified preparations. Testosterone and androstenedione competitively inhibited estradiol 2-hydroxylation, and estrone and estradiol competitively inhibited aromatization of both testosterone and androstenedione. Estrone and estradiol showed Ki of 4.8 and 7.3 μM, respectively, for testosterone aromatization, and 5.0 and 8.1 μM, respectively, for androstenedione aromatization. Androstenedione and testosterone showed Ki of 0.32 and 0.61 μM, respectively, for estradiol 2-hydroxylation. Our studies showed that aromatase P-450 functions as estrogen 2-hydroxylase as well as androgen 19-, 1β-,and 2β-hydroxylase and aromatase. The results indicate that placental aromatase is responsible for the highly elevated levels of the catechol estrogen and 19-hydroxyandrogen during pregnancy. These results also indicate that the active site structure holds the steroid ssubstrates to face their β-side of the A-ring to the heme, tilted in such a way as to make the 2-position of estrogens and 19-, 1-, and 2-positions of androgens available for monooxygenation.  相似文献   

9.
17β-Hydroxysteroid dehydrogenase (17β-HSD) type 2 catalyzes the NAD+-dependent oxidation of androgens, estrogens and progestins, predominantly in the secretory endometrium, placenta, liver and small intestine. 17β-HSD type 3 catalyzes the NADPH-dependent conversion of androstenedione to testosterone in the testis, and the genetic disease 17β-HSD deficiency is caused by mutations in the 17β-HSD3 gene.  相似文献   

10.
Estradiol (E2) is produced locally in adipose tissue and could play an important role in fat distribution and accumulation, especially in women. It is well recognized that aromatase is expressed in adipose tissue; however the identity of its estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD) partner is not identified. To gain a better knowledge about the enzyme responsible for the conversion of estrone into estradiol, we determined the activity and expression levels of known estrogenic 17β-HSDs, namely types 1, 7 and 12 17β-HSD in preadipocytes before and after differentiation into mature adipocytes using an adipogenic media. Estrogenic 17β-HSD activity was assessed using [14C]-labelled estrone, while mRNA expression levels of types 1, 7 and 12 17β-HSD were quantified using real-time PCR and protein expression levels of type 12 17β-HSD was determined using immunoblot analysis. The data indicate that there is a low conversion of E1 into E2 in preadipocytes; however this activity is increased 5-fold (p < 0.0001) in differentiated adipocytes. The increased estrogenic 17β-HSD activity is consistent with the increase in protein expression levels of 17β-HSD12.  相似文献   

11.
Estrogens play an important role in the development and progression of breast cancer. 17β-Hydroxysteroid dehydrogenase (17β-HSD) type 2 and type 5 are involved in sex steroid metabolism. 17β-HSD type 2 converts estradiol to estrone while 17β-HSD type 5 converts androstenedione to testosterone. Using immunocytochemistry, we have studied the expression of 17β-HSD type 2 and type 5 in 50 specimens of breast carcinoma and adjacent non-malignant tissues. The results were correlated with the estrogen receptor α (ERα) and β (ERβ), progesterone receptor A (PRA) and B (PRB), androgen receptor and CDC47 and with the tumor stage, tumor size, nodal status and menopausal status. 17β-HSD type 2 was expressed in 20% and 17β-HSD type 5 in 56% of breast cancer specimens. In adjacent normal tissues, both enzymes were highly expressed in almost all the patients. No significant association could be found between the expression of 17β-HSD type 2 and 17β-HSD type 5 and between the expression of each enzyme and the clinicopathological parameters studied. The decrease in 17β-HSD type 2 and 17β-HSD type 5 expressions in breast cancer may play a predominant role in the development and/or progression of the cancer by modifying the intratumoral levels of estrogens and androgens.  相似文献   

12.
The success in synthesis of [3H]5-androstene-3,17-dione, the intermediate product in the transformation of DHEA to 4-androstenedione by 3β-hydroxysteroid dehydrogenase/ 5-ene→4-ene isomerase (3β-HSD) offers the opportunity to determine whether or not the two activities reside in one active site or in two closely related active sites. The finding that N,N-dimethyl-4-methyl-3-oxo-4-aza-5-androstane-17β-carboxamide (4-MA) inhibits competitively and specifically the dehydrogenase activity whereas a non-competitive inhibition type with a Ki value 1000 fold higher was observed for the isomerase activity, indicated that dehydrogenase and isomerase activities belong to separate sites. Using 5-dihydro-testosterone and 5-androstane-3β,17β-diol, exclusive substrates for dehydrogenase activity, it was shown that dehydrogenase is reversible and strongly inhibited by 4-MA and that thus the irreversible step in the transformation of DHEA to 4-androstenedione is due to the isomerase activity.  相似文献   

13.
Estradiol (E2) plays a crucial role in all reproduction processes. In the placenta, it is well recognized that E2 is synthesized from fetal dehydroepiandrosterone sulfate (DHEAS). However, there is some controversy about the biosynthetic pathway involved, some authors suggest that E2 is produced by aromatization of testosterone (T), while others suggest that E2 is produced by the conversion of estrone (E1) into E2 by type 1 17β-HSD, subsequent to the aromatization of 4-androstenedione (4-dione) into E1. In the present report, using the precursor [14C]DHEA, inhibitors of steroidogenic enzymes (chemical inhibitors and siRNA) and a choriocarcinoma (JEG-3) cell line that expresses all the enzymes necessary to transform DHEA into E2, we could determine the sequential steps and the specific steroidogenic enzymes involved in the transformation of DHEA into E2. Quantification of mRNA expression levels using real-time PCR, strongly suggests that type 1 3β-hydroxysteroid dehydrogenase (3β-HSD1), aromatase and type 1 17β-HSD (17β-HSD1) that are highly expressed in JEG-3 cells are the enzymes responsible for the transformation of DHEA into E2. Analysis of the intermediates produced in the absence and presence of 3β-HSD, aromatase and 17β-HSD1 inhibitors permits to determine the following sequential steps: DHEA is transformed into 4-dione by 3β-HSD1, then 4-dione is aromatized into E1 by aromatase and E1 is finally transformed into E2 by 17β-HSD1. Our data are clearly in favor of the pathway in which the step of aromatization precedes the step of reduction by 17β-HSD.  相似文献   

14.
Estrogen plays a major role in breast cancer development and progression. Breast tissue and cell lines contain the necessary enzymes for estrogen synthesis, including aromatase and 17β-hydroxysteroid dehydrogenase (17β-HSD). These enzymes can influence tissue exposure to estrogen and therefore have become targets for breast cancer treatment and prevention. This study determined whether the isoflavone genistein (GEN) and the mammalian lignans enterolactone (EL) and enterodiol (ED) would inhibit the activity of aromatase and 17β-HSD type 1 in MCF-7 cancer cells, thereby decreasing the amount of estradiol (E2) produced and consequently cell proliferation. Results showed that 10 μM EL, ED and GEN significantly decreased the amount of estrone (E1) produced via the aromatase pathway by 37%, 81% and 70%, respectively. Regarding 17β-HSD type 1, 50 μM EL and GEN maximally inhibited E2 production by 84% and 59%, respectively. The reduction in E1 and E2 production by EL and the reduction in E2 production by GEN were significantly related to a reduction in MCF-7 cell proliferation. 4-Hydroxyandrostene-3,17-dione (50 μM) did not inhibit aromatase but inhibited the conversion of E1 to E2 by 78%, suggesting that it is a 17β-HSD type 1 inhibitor. In conclusion, modulation of local E2 synthesis is one potential mechanism through which ED, EL and GEN may protect against breast cancer.  相似文献   

15.
16.
The isoenzymes of the 3β-hydroxysteroid dehydrogenase/5-ene-4-ene-isomerase (3β-HSD) gene family catalyse the transformation of all 5-ene-3β-hydroxysteroids into the corresponding 4-ene-3-keto-steroids and are responsible for the interconversion of 3β-hydroxy- and 3-keto-5-androstane steroids. The two human 3β-HSD genes and the three related pseudogenes are located on the chromosome 1p13.1 region, close to the centromeric marker D1Z5. The 3β-HSD isoenzymes prefer NAD+ to NADP+ as cofactor with the exception of the rat liver type III and mouse kidney type IV, which both prefer NADPH as cofactor for their specific 3-ketosteroid reductase activity due to the presence of Tyr36 in the rat type III and of Phe36 in mouse type IV enzymes instead of Asp36 found in other 3β-HSD isoenzymes. The rat types I and IV, bovine and guinea pig 3β-HSD proteins possess an intrinsic 17β-HSD activity psecific to 5-androstane 17β-ol steroids, thus suggesting that such “secondary” activity is specifically responsible for controlling the bioavailability of the active androgen DHT. To elucidate the molecular basis of classical form of 3β-HSD deficiency, the structures of the types I and II 3β-HSD genes in 12 male pseudohermaphrodite 3β-HSD deficient patients as well as in four female patients were analyzed. The 14 different point mutations characterized were all detected in the type II 3β-HSD gene, which is the gene predominantly expressed in the adrenals and gonads, while no mutation was detected in the type I 3β-HSD gene predominantly expressed in the placenta and peripheral tissues. The mutant type II 3β-HSD enzymes carrying mutations detected in patients affected by the salt-losing form exhibit no detectable activity in intact transfected cells, at the exception of L108W and P186L proteins, which have some residual activity (1%). Mutations found in nonsalt-loser patients have some residual activity ranging from 1 to 10% compared to the wild-type enzyme. Characterization of mutant proteins provides unique information on the structure-function relationships of the 3β-HSD superfamily.  相似文献   

17.
18.
Previous in vitro experiments showed that both, Taenia crassiceps and Taenia solium cysticerci have the ability to metabolize exogenous androstenedione to testosterone. Here we evaluate on the capacity of both cysticerci to synthesize several sex steroid hormones, using different hormonal precursors. Experiments using thin layer chromatography (TLC) showed that both cysticerci were able to produce 3H-hydroxyprogesterone, 3H-androstenedione and 3H-testosterone when 3H-progesterone was used as the precursor. They also synthesized 3H-androstenediol and 3H-testosterone when 3H-dehydroepiandrosterone was the precursor. In addition, both cysticerci interconverted 3H-estradiol and 3H-estrone. These results, strongly suggest the presence and activity of the Δ4 and Δ5 steroid pathway enzymes, 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase-like enzyme (3β-HSD), that converts androstenediol into testosterone; and the 17β-hydroxysteroid dehydrogenase that interconverts estradiol and estrone, in both types of cysticerci.  相似文献   

19.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

20.
The well-established neuroprotective effect of dehydroepiandrosterone (DHEA) has been attributed to its metabolism in the brain to provide estrogens known to be neuroprotective and to enhance memory and learning in humans and animals. However, our previous work showed that the conversion of DHEA to 4-androstenedione (AD), the precursor of estrone (E1) and estradiol (E2), is very low in several different types of neural cells, and that the main product is 7-hydroxy-DHEA (7-OH-DHEA). In this study, we found that microglia are an exception and produce mainly 5-androstene-3β,17β-diol (Δ5-Adiol), a C19 steroid with estrogen-like activity from DHEA. Virtually, no other products, including testosterone (T) were detected by TLC or HPLC in incubations of 3H-labeled DHEA with the BV2 microglial cell line. Microglia are important brain cells that are thought to play a house-keeping role during the steady state, and that are crucial to the brain's immune reaction to injury and the healing process. Our findings suggest that the microglia-produced Δ5-Adiol might have a role in modulating estrogen-sensitive neuroplastic events in the brain, in the absence of adequate local synthesis of estrone and estradiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号