首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A number of homeobox genes have been found to be expressed in skin and its appendages, such as scale and feather, and appear to be candidates for the regulation of the development of these tissues. We report that the proline-rich divergent homeobox gene Hex is expressed during development of chick embryonic skin and its appendages (scale and feather). In situ hybridization analysis revealed that, during development of the skin, a transient expression of the Hex gene was observed. While the expression of Hex in the dermis was closely correlated with proliferation activity of epidermal basal cells, that in the epidermis was related to a suppression of epidermal differentiation. When dermal fibroblasts were transfected with Hex, stimulation of both DNA synthesis and proliferation of the epidermal cells followed by two-fold scale ridge elongation and increase in epidermal area was observed during culture of the skin, whereas epidemal keratinization was not affected. This is the first study to demonstrate that Hex is expressed during development of the skin and its appendages and that its expression in the dermal cells regulates epidermal cell proliferation through epithelial mesenchymal interaction.  相似文献   

3.
4.
We have used specific cDNAs to the rat vitamin D receptor (VDR) and to the mammalian vitamin D-dependent calcium-binding proteins (calbindin-D9k in intestine and calbindin-D28k in kidney) in order to obtain a better understanding of the regulation of the VDR gene and its relationship to calbindin gene expression. Hormonal regulation and development expression of the rat VDR gene were characterized by both Northern and slot blot analyses. Administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 25 ng/day for 7 days) to vitamin D-deficient rats resulted in an increase in calbindin mRNA in intestine and kidney but no change in VDR mRNA in these tissues. Vitamin D-deficient rats responded to dexamethasone treatment (100 micrograms/100 g of body weight/day for 4 days) with a 2.5-fold increase in intestinal VDR mRNA which was accompanied by a 4-fold decrease in intestinal calbindin-D9k mRNA. Developmental studies indicated a pronounced increase in renal VDR mRNA and calbindin-D28k mRNA between birth and 1 week of age. In the intestine, an induction of VDR and calbindin-D9k gene expression was observed at a later time, during the 3rd postnatal week (the period of increased duodenal active transport of calcium). Taken collectively, our data indicate that in the adult rat, target tissue response to hormone is not modified by a corresponding alteration in new receptor synthesis. However, developmental studies indicate that the induction of 1,25(OH)2D3 receptor mRNA is correlated with the induction of calbindin gene expression. Our results also demonstrate that glucocorticoid administration can result in an alteration in intestinal calbindin and VDR gene expression.  相似文献   

5.
6.
We have studied the temporal and spatial expression of transforming growth factor beta 2 (TGF beta 2) RNA in mouse embryos from 10.5 days post coitum (p.c.) to 3 days post partum (p.p.) by in situ hybridization analysis. TGF beta 2 RNA is expressed in a variety of tissues including bone, cartilage, tendon, gut, blood vessels, skin and fetal placenta, and is in general found in the mesenchymal component of these tissues. The expression of TGF beta 2 RNA changes during development in a manner consistent with a role for the gene product in mediating mesenchymal-epithelial interactions.  相似文献   

7.
Proenkephalin A (PEA), a neuropeptide-encoding gene, is widely expressed in the nervous and endocrine systems. Recently, we demonstrated that in addition to its abundance in fetal brain tissue; PEA is markedly expressed in nondifferentiated mesodermal cells of developing fetuses. To evaluate the implication of these findings for the normal development of tissues of mesodermal origin, we examined the expression of PEA in rat mesenchymal tissues during pre- and postnatal development. Using in situ hybridization analysis combined with RNA blots and a Met-enkephalin-specific radioimmunoassay, we showed that (i) PEA mRNA levels in embryonic and newborn mesenchymal derivative tissues were as high as in the developing brain, (ii) PEA mRNA concentrations in these tissues dropped to undetectable levels shortly after birth, and (iii) this mRNA was translated and processed differentially among different mesenchymal tissues, yielding a tissue-specific pattern of PEA-derived peptides. Our results demonstrate multilevel regulation of PEA gene expression during ontogenic development of mesenchymal derivative tissues. The transient expression and the correlation between PEA mRNA and tissue maturation support the notion that peptides encoded by PEA play a significant role in normal development of these tissues. These findings provide a framework for examination of the mechanisms and roles of PEA gene expression during mesenchymal ontogeny.  相似文献   

8.
9.
10.
We investigated the temporal and spatial distribution of osteonectin during human embryonic and fetal development, using in situ hybridization and immunohistochemistry. Osteonectin gene expression was generally found in cells exhibiting high rates of matrix production/proliferation. In mineralized tissue, a strong signal was obtained in osteoblasts, odontoblasts, and chondrocytes of the upper hypertrophic and proliferative zones. Chondrocytes of the mineralized zone showed no expression throughout the different stages of development. Strong osteonectin expression was found in odontoblasts of developing teeth. In addition, osteonectin mRNA and protein were detected in several non-mineralized tissues: steroid-producing cells of the adrenal gland and the gonads, kidney (glomeruli), lung (bronchi), skin, megacaryocytes, and large vessels. Histochemistry confirmed the results and detected extracellular osteonectin in bone and in the zone of mineralized cartilage only. The localization of osteonectin in bone, cartilage, and teeth is consistent with a role in the initiation of mineralization. However, the organ-specific distribution in non-mineralized tissues suggests an important multifunction role of this protein during human development.  相似文献   

11.
Neuronal death during nervous system development, a widely observed phenomenon, occurs through unknown mechanisms. Recent evidence suggests an active, destructive process requiring new gene expression. Sulfated glycoprotein-2 (SGP-2), a secretory product of testicular Sertoli cells has been shown to up-regulate in several nonneural tissues undergoing programmed cell death and in several types of neuronal degeneration. In order to determine if this message up-regulates in neurons undergoing developmentally determined cell death, we have studied the expression of SGP-2 mRNA in the developing and adult rat central nervous system (CNS) with in situ hybridization. We also report on the expression of this message in nonneural tissues from several regions of the developing embryo. The developing and adult rat central nervous system as well as widely varied tissues in the rat embryo express SGP-2 mRNA in a pattern that does not correlate with regions undergoing developmental cell death. In the nervous system, SGP-2 mRNA is expressed in neuronal populations including motor neurons, cortical neurons, and hypothalamic neurons at ages when the period of developmental cell death has passed. In a nonneural tissue (palatal shelve epithelium) for which a developmental cell death period has been described, SGP-2 mRNA was not present in the region where cell death occurs. We conclude that SGP-2 mRNA expression cannot be correlated with programmed cell death in neural or nonneural tissues. The results of this study as well as recently reported SGP-2 homologies indicate a possible role for this protein in secretion and lipid transport.  相似文献   

12.
13.
14.
15.
Transforming growth factor (TGF)-beta is a family of multifunctional cytokines controlling cell growth, differentiation, and extracellular matrix deposition in the lung. The biological effects of TGF-beta are mediated by type I (TbetaR-I) and II (TbetaR-II) receptors. Our previous studies show that the expression of TbetaR-II is highly regulated in a spatial and temporal fashion during lung development. In the present studies, we investigated the temporal-spatial pattern and cellular expression of TbetaR-I during lung development. The expression level of TbetaR-I mRNA in rat lung at different embryonic and postnatal stages was analyzed by Northern blotting. TbetaR-I mRNA was expressed in fetal rat lungs in early development and then decreased as development proceeded. The localization of TbetaR-I in fetal and postnatal rat lung tissues was investigated by using in situ hybridization performed with an antisense RNA probe. TbetaR-I mRNA was present in the mesenchyme and epithelium of gestational day 14 rat lungs. An intense TbetaR-I signal was observed in the epithelial lining of the developing bronchi. In gestational day 16 lungs, the expression of TbetaR-I mRNA was increased in the mesenchymal tissue. The epithelium in both the distal and proximal bronchioles showed a similar level of TbetaR-I expression. In postnatal lungs, TbetaR-I mRNA was detected in parenchymal tissues and blood vessels. We further studied the expression of TbetaR-I in cultured rat lung cells. TbetaR-I was expressed by cultured rat lung fibroblasts, microvascular endothelial cells, and alveolar epithelial cells. These studies demonstrate a differential regulation and localization of TbetaR-I that is different from that of TbetaR-II during lung development. TbetaR-I, TbetaR-II, and TGF-beta isoforms exhibit distinct but overlapping patterns of expression during lung development. This implies a distinct role for TbetaR-I in mediating TGF-beta signal transduction during lung development.  相似文献   

16.
目的:斑马鱼NUP98基因的克隆及其在个体早期发育过程中的表达情况研究。方法:提取斑马鱼胚胎的总RNA,制备地高辛标记的NUP98RNA反义探针,WISH(整体胚胎原位杂交)研究NUP98在斑马鱼早期发育过程中的表达;提取斑马鱼胚胎各时相和成鱼各组织的RNA,实时定量PCR检测斑马鱼胚胎各时相和成鱼各组织中的表达。结果:成功克隆斑马鱼NUP98基因,通过实时定量RT-PCR和原位杂交,获得NUP98基因在斑马鱼早期发育过程中的表达情况:NUP98在2-cell、32.cell、oblong、shield期、12h前普遍性表达(0.75h、1.7h、3.7h、6h、12h);24h以后在眼部、头部表达较多,特别是在脊索表达较高;斑马鱼NUP98在0、0.5h、6h、12h、24h、48h表达逐渐降低,到72h和96h表达有所增加,但是仍低于24h其表达水平;NUP98在成鱼眼、脑、鳔、肾、肝、睾丸、胆囊、卵巢、鳍、心、肠、肌肉、腮、皮肤的表达中,眼的表达最高,明显高于其他组织,腮、卵巢、肠的表达次之,肌肉、鳔、胆囊、睾丸、皮肤、脑的表达紧随其后,鳍、肝、心、肾的表达最低。结论:NUP98基因可能在个体脑部、脊索及眼部的早期发育过程中起到了重要作用;NUP98基因可能具有抑制肿瘤发生的作用,该基因的调节异常对白血病的发生发展可能有重要影响。这些研究结果为进一步研究NUP98基因在造血系统中的作用,评估其是否适合作为血液系统恶性肿瘤的新的治疗靶点等奠定了理论基础。  相似文献   

17.
18.
19.
Xenopus larval keratin (XLK) was isolated by gel electrophoresis of proteins of tadpole skin. Screening of an expression cDNA library of tail tissues by specific polyclonal antibodies against XLK produced XLK cDNA (xlk). Its complete nucleotide and predicted amino acid sequences revealed that XLK was a new member of type II keratin. Screening of a cDNA library of adult Xenopus skin using an oligonucleotide probe which had been designed from well-conserved N-terminal amino acid sequences of the rod domain of type I keratin produced two cDNAs, xak-a and xak-b, which were found to be new members of type I keratin gene. Northern blot analysis showed that xlk was expressed exclusively in the larval skin whereas xak-a and xak-b were expressed exclusively in the adult skin. Their expression level was regulated in a region- and metamorphic stage- dependent manner during larval skin development. mRNA in situ hybridization experiments identified the cells that expressed xlk, and xak-a and xak-b as larva- specific epidermal cells (skein cells and basal cells), and adult suprabasal epidermal cells, respectively. These three genes were found to be late responsive to thyroid hormone. Phylogenetic relationships of these keratins with known ones are discussed.  相似文献   

20.
Vitamin K-dependent carboxylase catalyzes the posttranslational modification of glutamate to γ-carboxyglutamate (Gla) in its substrates, the vitamin K-dependent proteins (VKDPs). This modification is required for the activities of the VKDPs. Recent evidence demonstrates previously unrecognized roles for VKDPs as signaling molecules important in the regulation of cell growth, adhesion, and apoptosis, suggesting developmental functions for VKDPs and hence the carboxylase. The tissue distribution and functions of carboxylase in development are unknown. In this study, we isolated and characterized the full-length cDNA encoding the rat carboxylase and analyzed, at the cellular level, the expression of this gene in rat embryos byin situhybridization. We demonstrate that the expression of this gene is highly regulated in a developmental and tissue-specific manner. Hepatocytes, the major site of synthesis of VKDPs of blood coagulation, express carboxylase mRNA late in gestation, in contrast to the central nervous system, mesenchymal, and skeletal tissues which express carboxylase mRNA early during rat embryogenesis. The tissue-specific temporal expression of the carboxylase gene during embryogenesis indicates that vitamin K-dependent carboxylation and the formation of Gla is developmentally regulated. These studies suggest that vitamin K-dependent carboxylation is an important modulator of embryonic VKDP function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号