首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
分子伴侣     
李强 《生物学通报》1995,30(3):16-17
分子伴侣是最近十几年才发现的一类非常保守的蛋白家庭。它与酶的作用方式类似,能和某些不同的多肽链非特异性结合,催化介导蛋白质特定构象的形成,参与体内蛋白质的折叠、装配和转运,但又不构成其结构的一部分。这类保守的蛋白家族大致可分为四类,广泛存在于生物体中。其中研究得最多的是热休克蛋白。实际上,分子伴侣是一种蛋白质分子构象的协助者,主要参与蛋白质次级结构的形成。  相似文献   

2.
玉米胚乳细胞中纯化的细胞质Hsp70蛋白有低水平的ATPase 活性,它在50 ℃、pH5 .8 、20 mmol/L的KCl 条件下活性最高,Ca2+和Mg2+ 抑制其活性。大肠杆菌DnaJ蛋白能将玉米细胞质Hsp70 的ATPase 活性提高6倍,而GrpE 蛋白对其影响很小。8 种不同的人工合成多肽均能刺激该蛋白的ATPase 活性,增加幅度从2 .5 倍到10 倍不等。亲水性不同的氨基酸对Hsp70 的ATPase 活性影响不同。玉米细胞质Hsp70 是一个三磷酸核苷酸酶,除ATP 外,它还能催化UTP、GTP、CTP和ITP的水解  相似文献   

3.
热激蛋白(HSP70)作为分子伴侣参与细胞内许多重要反应,从而对生物体起着重要的作用。随着研究的深入,其生物学功能不断被发现和利用的同时,HSP70的应用前景也变得越来越广泛。已有研究者对HSP70的生物学功能做了详细介绍,我们主要对近年来HSP70在医学及环境监测等方面的应用进行综述。  相似文献   

4.
玉米细胞质分子伴侣Hsp70的ATPase活性   总被引:1,自引:0,他引:1  
玉米胚乳细胞中纯化的细胞质Hsp70蛋白有低水平的ATPase活性,它在50℃、PH5.8、20mmol/L的KCl条件下活性最高,Ca^2+和Mg^2+抑制其活性。大肠杆菌DnaJ蛋白能将玉米细胞质Hsp70的ATPase活性提高6倍,而GrpE蛋白对其影响很小。8种不同的人工合成多肽均能刺激该蛋白折ATPase活性,增加幅度从2.5倍到10倍痫水性不同的氨基酸对Hsp70的ATPase活性影响  相似文献   

5.
果蝇热激蛋白的研究进展   总被引:2,自引:1,他引:1  
热休克蛋白(heat shock proteins,HSPs)是生物体受到应激刺激时诱导产生的一组保守性蛋白,普遍存在于各种生物体中。近年来,果蝇Drosophila作为生命科学与人类疾病研究的重要模式生物,其热激蛋白的研究取得了许多新的进展。文章对果蝇热激蛋白的类别、热激蛋白基因的表达调控机制、热激蛋白的分子伴侣功能、调节细胞存亡和影响发育及寿命等相关生物学功能进行综述,并对热激蛋白在神经退行性疾病治疗中的应用前景作展望。  相似文献   

6.
7.
热激蛋白90(Heat shock protein 90,Hsp90)是细胞内最为广泛的分子伴侣之一,间接调控细胞内多条与细胞增殖、分化、存活、滞育以及与凋亡相关的信号转导通路。近年来,对Hsp90家族成员在分子水平上的认识不断深入,Hsp90已成为细胞免疫、信号转导以及抗肿瘤研究的前沿课题。昆虫功能基因组的研究正在世界范围内掀起热潮,与昆虫滞育相关热激蛋白的研究也不断深入。对近年来国内外Hsp90的生物学特性、生物学功能及其在昆虫防治中的研究现状及前景进行综述,以期为害虫综合防治的研究提供参考信息。  相似文献   

8.
热休克蛋白90(HSP90)是一类ATPase依赖性蛋白,作为分子伴侣,可在辅分子伴侣协助下,通过自身构象改变,参与众多细胞的生物学事件,从而协助新合成蛋白的正确折叠、成功装配、功能稳定及异常蛋白的降解过程。HSP90功能的发挥依赖于辅分子伴侣及氨基末端结合的核苷酸。辅分子伴侣是一类可与分子伴侣(如,HSP90)结合并调节其功能的蛋白,通过参与ATPase循环从而调节HSP90分子伴侣的功能。近年来,辅分子伴侣的研究得到越来越多的关注,本文就辅分子伴侣调控HSP90功能的作用进行综述。  相似文献   

9.
热激蛋白47(heat shock protein 47,HSP470)作为胶原特异性的分子伴侣(molecular chaperone),能与前胶原特异性结合参与前胶原的折叠、修饰、转运等过程。两表达的时空一致性在培养细胞、胚胎发育细胞和组织纤维化进程中均得到证实,从而引起了人们对其在皮肤修复、抑制纤维化和肿瘤治疗等方面的重视。  相似文献   

10.
分子伴侣的功能和应用   总被引:10,自引:0,他引:10  
本文综述了分子伴侣的分类、功能、作用机理、研究现状及应用前景。分子伴侣是在生物大分子的折叠、组装、转运及降解等过程中起协助作用,参与协助抗原的呈递和遗传物质的复制、转录及构象的确立,但自身并不发生任何变化的一大类广泛存在于生物体内的蛋白质分子。随着对分子伴侣的进一步研究和相关知识的不断深入,分子伴侣在生物产品开发、物种改良、抗衰老,疾病预防、诊断和治疗以及环境监测方面具有广阔的前景。  相似文献   

11.
Protein kinases are the most prominent group of heat shock protein 90 (Hsp90) clients and are recruited to the molecular chaperone by the kinase-specific cochaperone cell division cycle 37 (Cdc37). The interaction between Hsp90 and nematode Cdc37 is mediated by binding of the Hsp90 middle domain to an N-terminal region of Caenorhabditis elegans Cdc37 (CeCdc37). Here we map the binding site by NMR spectroscopy and define amino acids relevant for the interaction between CeCdc37 and the middle domain of Hsp90. Apart from these distinct Cdc37/Hsp90 interfaces, binding of the B-Raf protein kinase to the cochaperone is conserved between mammals and nematodes. In both cases, the C-terminal part of Cdc37 is relevant for kinase binding, whereas the N-terminal domain displaces the nucleotide from the kinase. This interaction leads to a cooperative formation of the ternary complex of Cdc37 and kinase with Hsp90. For the mitogen-activated protein kinase extracellular signal-regulated kinase 2 (Erk2), we observe that certain features of the interaction with Cdc37·Hsp90 are conserved, but the contribution of Cdc37 domains varies slightly, implying that different kinases may utilize distinct variations of this binding mode to interact with the Hsp90 chaperone machinery.  相似文献   

12.
Fission yeast Cdc37 is required for multiple cell cycle functions   总被引:1,自引:0,他引:1  
The identification of a Schizosaccharomyces pombe homologue of the cdc37 gene is described. The gene product is most similar to the budding yeast homologue, but shows similarity to metazoan Cdc37 proteins, with a region of high similarity at the extreme N-terminus. Gene transplacement experiments in diploid cells followed by tetrad dissection show that the gene is essential. Depletion of the gene product after switching off expression of cdc37 from the regulatable nmt81 promoter results in cessation of growth and division. The cells arrest heterogeneously, with a significant proportion showing mitotic defects; paradoxically, a proportion of the cells show a short-cell phenotype consistent with an advanced cell cycle.Communicated by D. Y. Thomas  相似文献   

13.
Recently we showed that the glycine-rich loop in the N-terminal portion of protein kinases and the client-binding site of Cdc37 are both necessary for interaction between Cdc37 and protein kinases. We demonstrate here that the N-terminal portion of Cdc37, distinct from its client-binding site, interacts with the C-terminal portion of Raf-1. This interaction might expose the client-binding site of Cdc37. In addition, we provide evidence indicating that Cdc37 is monomeric in its physiological state, and that it becomes a dimer only when it is complexed with both Hsp90 and protein kinases.  相似文献   

14.
15.
Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Delta and hsc82Delta strains. The protein kinase-binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase-signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90.  相似文献   

16.
We previously identified a protein spot that showed down-regulation in the presence of Cryphonectria hypovirus 1 (CHV1) and tannic acid supplementation as a Hsp90 co-chaperone p23 gene (CpCop23). The CpCop23-null mutant strain showed retarded growth with less aerial mycelia and intense pigmentation. Conidia of the CpCop23-null mutant were significantly decreased and their viability was dramatically diminished. The CpCop23-null mutant showed hypersensitivity to Hsp90 inhibitors. However, no differences in responsiveness were observed after exposure to other stressors such as temperature, reactive oxygen species, and high osmosis, the exception being cell wall-disturbing agents. A severe reduction in virulence was observed in the CpCop23-null mutant. Interestingly, viral transfer to the CpCop23-null mutant from CHV1-infected strain via anastomosis was more inefficient than a comparable transfer with the wild type as a result of decreased hyphal branching of the CpCop23-null mutant around the peripheral region, which resulted in less fusion of the hyphae. The CHV1-infected CpCop23-null mutant exhibited recovered mycelial growth with less pigmentation and sporulation. The CHV1-transfected CpCop23-null mutant demonstrated almost no virulence, that is, even less than that of the CHV1-infected wild type (UEP1), a further indication that reduced virulence of the mutant is not attributable exclusively to the retarded growth but rather is a function of the CpCop23 gene. Thus, this study indicates that CpCop23 plays a role in ensuring appropriate mycelial growth and development, spore viability, responses to antifungal drugs, and fungal virulence. Moreover, the CpCop23 gene acts as a host factor that affects CHV1-infected fungal growth and maintains viral symptom development.  相似文献   

17.
Cdc37p, the p50 homolog of Saccharomyces cerevisiae, is an Hsp90 cochaperone involved in the targeting of protein kinases to Hsp90. Here we report a role for Cdc37p in osmoadaptive signalling in this yeast. The osmosensitive phenotype that is displayed by the cdc37-34 mutant strain appears not to be the consequence of deficient signalling through the high osmolarity glycerol (HOG) MAP kinase pathway. Rather, Cdc37p appears to play a role in the filamentous growth (FG) pathway, which mediates adaptation to high osmolarity parallel to the HOG pathway. The osmosensitive phenotype of the cdc37-34 mutant strain is aggravated upon the deletion of the HOG gene. We report that the hyper-osmosensitive phenotype of the cdc37-34, hog1 mutant correlates to a reduced of activity of the FG pathway. We utilized this phenotype to isolate suppressor genes such as KSS1 that encodes a MAP kinase that functions in the FG pathway. We report that Kss1p interacts physically with Cdc37p. Like Kss1p, the second suppressor that we isolated, Dse1p, is involved in cell wall biogenesis or maintenance, suggesting that Cdc37p controls osmoadapation by regulating mitogen-activated protein kinase signalling aimed at adaptive changes in cell wall organization.  相似文献   

18.
Hsp90 and its co-chaperone Cdc37 are required for the activity of numerous eukaryotic protein kinases. c-Jun N-terminal kinases (JNKs) appear to be Hsp90-independent kinases, as their activity is unaffected by Hsp90 inhibition. It is currently unknown why some protein kinases are Hsp90- and Cdc37-dependent for their function, while others are not. Therefore, we investigated what structural motifs within JNKs confer or defer Hsp90 and Cdc37 interaction. Both Hsp90 and Cdc37 recognized structural features that were exposed or destabilized upon deletion of JNK1alpha1's N-terminal non-catalytic structural motif, while only Hsp90 bound JNK when its C-terminal non-catalytic structural motif was deleted. Mutations in JNK's activation loop that are known to constitutively activate or inactivate its kinase activity had no effect on JNK's lack of interaction with Hsp90 and Cdc37. Our findings suggest a model in which Hsp90 and Cdc37 each recognize distinct features within the catalytic domains of kinases.  相似文献   

19.
Heat shock protein 90 (Hsp90) as a molecular target for oncology therapeutics has attracted much attention in the last decade. The Hsp90 multichaperone complex has important roles in the growth and/or survival of cancer cells. Cdc37, as a cochaperone, associates kinase clients to Hsp90 and promotes the development of malignant tumors. Disrupting the Hsp90–Cdc37 interaction provides an alternative strategy to inhibit the function of Hsp90 for cancer therapy. Celastrol, as a natural product, can disrupt the Hsp90–Cdc37 interaction and induce degradation of kinase clients. The study conducted here attempted to elucidate the structure–activity relationship of celastrol derivatives as Hsp90–Cdc37 disruptors and to improve the druglike properties. 23 celastrol derivatives were designed, synthesized, and the biological activities and physicochemical properties were determined. The derivative CEL20 showed improved Hsp90–Cdc37 disruption activity, anti-proliferative activities as well as druglike properties. Additionally, CEL20 induced clients degradation, cell cycle arrest and apoptosis in Panc-1 cells. This study can provide reference for the discovery of novel Hsp90–Cdc37 disruptors.  相似文献   

20.
马贞  魏静 《生命科学》2012,(10):1098-1104
热休克蛋白90(heat shock protein90,Hsp90)是一类在生物进化中高度保守的蛋白,与细胞凋亡密切相关,作为抗癌新靶标已经得到了广泛的关注。相关研究表明,Hsp90可以通过多种方式调控ATPase的活性,如自身构象改变、与辅伴侣分子形成复合物以及转录后修饰等。在Hsp90基本构象改变的基础上,综述了不同因素对ATPase的调控作用,着重阐述近几年的研究进展,为进一步研究Hsp90调控ATPase的机制提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号