首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
Thiazolidinediones (TZDs) are insulin-sensitising drugs that are ligands for the nuclear receptor PPAR gamma. They have been shown to inhibit PMA-stimulated secretion of TNFalpha from human monocytes, although only at concentrations well in excess of circulating levels observed during TZD therapy, suggesting a mechanism of action independent of PPAR gamma activation. Here we show that insulin-sensitising concentrations of the TZD rosiglitazone partially inhibit serum- or LPS- (but not PMA-) stimulated TNF alpha secretion from primary human monocytes, with an IC(50) of around 50nM. We also show that the observed effects are independent of PPAR gamma-mediated regulation of the lipid phosphatase PTEN. Reversed stimulus specificity, IC(50) in the insulin-sensitising range, and the fact that partial inhibition of TNF alpha secretion is also observed with a structurally unrelated PPAR gamma agonist, GW7845, demonstrate a mechanism of action distinct from that observed with higher TZD concentrations. These findings thus represent the first report of a PPAR gamma-dependent and therapeutically relevant anti-inflammatory action of TZDs in isolated human monocytes.  相似文献   

4.
Thiazolidinedione (TZD) compounds targeting the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) demonstrate unique benefits for the treatment of insulin resistance and type II diabetes. TZDs include rosiglitazone, pioglitazone and rivoglitazone, with the latter being the most potent. The TZDs are only marginally selective for the therapeutic target PPARγ as they also activate PPARα and PPARδ homologues to varying degrees, causing off-target effects. While crystal structures for TZD compounds in complex with PPARγ are available, minimal structural information is available for TZDs bound to PPARα and PPARδ. This paucity of structural information has hampered the determination of precise structural mechanisms involved in TZD selectivity between PPARs. To help address these questions molecular dynamic simulations were performed of rosiglitazone, pioglitazone and rivoglitazone in complex with PPARα, PPARδ, and PPARγ in order to better understand the mechanisms of PPAR selectivity. The simulations revealed that TZD interactions with residues Tyr314 and Phe318 of PPARα and residues Phe291 and Thr253 of PPARδ as well as the omega loop, are key determinants of TZD receptor selectivity. Notably, in this study, we solve the first X-ray crystal structure of rivoglitazone bound to any PPAR. Rivoglitazone forms a unique hydrogen bond network with the residues of the PPARγ co-activator binding surface (known as AF2) and makes more extensive contacts with helix 3 and the β-sheet as compared to model TZD compounds such as rosiglitazone.  相似文献   

5.
Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 μM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 μM CGZ effectively induced cell death after pretreatment with 30 μM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (<30 μM) were sufficient to induce cell death, although higher concentrations of CGZ (≥30 μM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse.  相似文献   

6.
7.
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPARγ protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPARγ ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPARγ ligands may have applications for the treatment of ovarian cancer.  相似文献   

8.
The pharmacology of thiazolidinediones (TZDs) seems to be driven not only by activation of peroxisome proliferator-activated receptor-γ (PPARγ), but also by PPARγ-independent effects on mitochondrial function and cellular fuel handling. This study portrayed such actions of the novel hydrophilic TZD compound BLX-1002 and compared them to those of conventional TZDs. Mitochondrial function and fuel handling were examined in disrupted rat muscle mitochondria, intact rat liver mitochondria, and specimens of rat skeletal muscle. BLX-1002 was superior to most other TZDs as an inhibitor of respiratory complex 1 in disrupted mitochondria, but had less effect than any other TZD on oxygen consumption by intact mitochondria and on fuel metabolism by intact tissue. The latter finding was obviously related to the hydrophilic properties of BLX-1002, because high potentials of individual TZDs to shift muscle fuel metabolism from the aerobic into the anaerobic pathway were associated with high ClogP values indicative of high lipophilicity and low hydrophilicity (e.g., % increase in lactate release induced by 10 μmol/l of respective compound: BLX-1002, ClogP 0.39, +10 ± 8%, not significant; pioglitazone, ClogP 3.53, +68 ± 12%, P < 0.001; troglitazone, ClogP 5.58, +157 ± 14%, P < 0.001). The observed specific properties of BLX-1002 could result from relatively strong direct affinity to an unknown mitochondrial target, but limited access to this target. Results suggest 1) that impairment of mitochondrial function and increased anaerobic fuel metabolism are unlikely to account for PPARγ-independent glucose lowering by BLX-1002, and 2) that higher lipophilicity of an individual TZD is associated with stronger acceleration of anaerobic glycolysis.  相似文献   

9.
10.
Currently approved thiazolidinediones (TZDs) are effective insulin-sensitizing drugs that may have efficacy for treatment of a variety of metabolic and inflammatory diseases, but their use is limited by side effects that are mediated through ectopic activation of the peroxisome proliferator-activated receptor γ (PPARγ). Emerging evidence suggests that the potent anti-diabetic efficacy of TZDs can be separated from the ability to serve as ligands for PPARγ. A novel TZD analog (MSDC-0602) with very low affinity for binding and activation of PPARγ was evaluated for its effects on insulin resistance in obese mice. MSDC-0602 treatment markedly improved several measures of multiorgan insulin sensitivity, adipose tissue inflammation, and hepatic metabolic derangements, including suppressing hepatic lipogenesis and gluconeogenesis. These beneficial effects were mediated at least in part via direct actions on hepatocytes and were preserved in hepatocytes from liver-specific PPARγ(-/-) mice, indicating that PPARγ was not required to suppress these pathways. In conclusion, the beneficial pharmacology exhibited by MSDC-0602 on insulin sensitivity suggests that PPARγ-sparing TZDs are effective for treatment of type 2 diabetes with reduced risk of PPARγ-mediated side effects.  相似文献   

11.
Podocytes are specialized epithelial cells that maintain the glomerular filtration barrier. These cells are susceptible to lipotoxicity in the obese state and irreversibly lost during kidney disease leading to proteinuria and renal injury. PPARγ is a nuclear receptor whose activation can be renoprotective. This study examined the role of PPARγ in the lipotoxic podocyte using a PPARγ knockout (PPARγKO) cell line and since the activation of PPARγ by Thiazolidinediones (TZD) is limited by their side effects, it explored other alternative therapies to prevent podocyte lipotoxic damage.Wild-type and PPARγKO podocytes were exposed to the fatty acid palmitic acid (PA) and treated with the TZD (Pioglitazone) and/or the Retinoid X receptor (RXR) agonist Bexarotene (BX).It revealed that podocyte PPARγ is essential for podocyte function. PPARγ deletion reduced key podocyte proteins including podocin and nephrin while increasing basal levels of oxidative and ER stress causing apoptosis and cell death. A combination therapy of low-dose TZD and BX activated both the PPARγ and RXR receptors reducing PA-induced podocyte damage. This study confirms the crucial role of PPARγ in podocyte biology and that their activation in combination therapy of TZD and BX may be beneficial in the treatment of obesity-related kidney disease.  相似文献   

12.
Activators of peroxisome proliferator-activated receptor (PPAR)-gamma are anti-inflammatory and have been proposed as therapeutic agents for the treatment of Th1-type inflammatory diseases. We report that nanomolar concentrations of rosiglitazone enhance the production of IL-10 from activated human mature monocyte-derived dendritic cells. Also, rosiglitazone specifically induces the production of IL-10 from TCR-activated human CD4+ T cells and that this effect is PPAR-gamma-dependent. We also demonstrate for the first time the presence of a functional PPAR response element (PPRE) in the human IL-10 promoter region. Finally we show that rosiglitazone can induce IL-10 in combination with 1,25 alpha-dihydroxyvitamin D3 to a greater extent than each treatment alone. In summary our findings demonstrate that IL-10 is upregulated by nanomolar TZDs in immune cells, and this may, in part, be responsible for the potential anti-inflammatory effects of PPAR-gamma in humans.  相似文献   

13.
15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) is a naturally occurring cyclopentenone metabolite of PGD(2) that possesses both peroxisome proliferator-activated receptor gamma (PPAR-gamma)-dependent and PPAR-gamma-independent anti-inflammatory properties. Recent studies suggest that cyclopentenone PGs may play a role in the down-regulation of inflammation-induced immune responses. In this study, we report that 15d-PGJ(2) as well as synthetic PPAR-gamma agonists inhibit lymphocyte proliferation. However, only 15d-PGJ(2), but not the specific PPAR-gamma activators, induce lymphocyte apoptosis. We found that blocking of the death receptor pathway in Fas-associated death domain(-/-) or caspase-8(-/-) Jurkat T cells has no effect on apoptosis induction by 15d-PGJ(2). Conversely, overexpression of Bcl-2 or Bcl-x(L) completely inhibits the initiation of apoptosis, indicating that 15d-PGJ(2)-mediated apoptosis involves activation of the mitochondrial pathway. In line with these results, 15d-PGJ(2) induces mitochondria disassemblage as demonstrated by dissipation of mitochondrial transmembrane potential (Deltapsi(m)) and cytochrome c release. Both of these events are partially inhibited by the broad spectrum caspase inhibitor benzyloxycarbonil-Val-Ala-Asp-fluoromethylketone, suggesting that caspase activation may amplify the mitochondrial alterations initiated by 15d-PGJ(2). We also demonstrate that 15d-PGJ(2) potently stimulates reactive oxygen species production in Jurkat T cells, and Deltapsi(m) loss induced by 15d-PGJ(2) is prevented by the reactive oxygen species scavenger N-acetyl-L-cysteine. In conclusion, our data indicate that cyclopentenone PGs like 15d-PGJ(2) may modulate immune responses even independent of PPAR-gamma by activating the mitochondrial apoptosis pathway in lymphocytes in the absence of external death receptor signaling.  相似文献   

14.
15.

Background

Kallikrein 6 (KLK6) is a newly identified member of the kallikrein family of secreted serine proteases that prior studies indicate is elevated at sites of central nervous system (CNS) inflammation and which shows regulated expression with T cell activation. Notably, KLK6 is also elevated in the serum of multiple sclerosis (MS) patients however its potential roles in immune function are unknown. Herein we specifically examine whether KLK6 alters immune cell survival and the possible mechanism by which this may occur.

Methodology/Principal Findings

Using murine whole splenocyte preparations and the human Jurkat T cell line we demonstrate that KLK6 robustly supports cell survival across a range of cell death paradigms. Recombinant KLK6 was shown to significantly reduce cell death under resting conditions and in response to camptothecin, dexamethasone, staurosporine and Fas-ligand. Moreover, KLK6-over expression in Jurkat T cells was shown to generate parallel pro-survival effects. In mixed splenocyte populations the vigorous immune cell survival promoting effects of KLK6 were shown to include both T and B lymphocytes, to occur with as little as 5 minutes of treatment, and to involve up regulation of the pro-survival protein B-cell lymphoma-extra large (Bcl-XL), and inhibition of the pro-apoptotic protein Bcl-2-interacting mediator of cell death (Bim). The ability of KLK6 to promote survival of splenic T cells was also shown to be absent in cell preparations derived from PAR1 deficient mice.

Conclusion/Significance

KLK6 promotes lymphocyte survival by a mechanism that depends in part on activation of PAR1. These findings point to a novel molecular mechanism regulating lymphocyte survival that is likely to have relevance to a range of immunological responses that depend on apoptosis for immune clearance and maintenance of homeostasis.  相似文献   

16.
The constitutive and gamma -linolenic acid (GLA)-induced expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) immunoreactive protein in a panel of human malignant brain (U87MG, T98G); breast (MCF-7, MB MDA-231, MB MDA 435) and prostate (ALVA, DU-145, LNCaP, PC3) cell lines have been compared with those for their normal cell counterparts, the human normal astrocyte (NHA), mammary epithelial (HMEC) and prostate epithelial (PrEC) cells, respectively. Constitutive levels of expression for PPAR gamma protein were significantly higher in the malignant cell lines relative to their normal cells. GLA supplementation did not affect the protein expression in malignant cells but caused 6- and 3-fold increases in normal breast and prostate cells, respectively. Since activation of PPAR gamma protein in some human malignant cell lines has been demonstrated to induce tumour cell death, these findings signal the need to exploit the significantly elevated expression of this protein in the therapy of human cancer.  相似文献   

17.
18.
Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-γ) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-γ activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-γ in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.  相似文献   

19.
Pioglitazone, a thiazolidinedione (TZD) derivative, is an antidiabetic agent that improves hyperglycaemia and hyperlipidaemia in obese and diabetic animals via a reduction in hepatic and peripheral insulin resistance. The TZDs including pioglitazone have been identified as high affinity ligands for peroxisome proliferator-activated receptor (PPAR) gamma. The selectivity of pioglitazone for the human PPAR subtypes has not been reported, thus, we investigated the effect of pioglitazone on the human PPAR subtypes. Transient transactivation assay showed that pioglitazone is a selective hPPARgamma1 activator and a weak hPPARalpha activator. Binding assay indicated that the transactivation of hPPARgamma1 or hPPARalpha by pioglitazone is due to direct binding of pioglitazone to each subtype. Furthermore, pioglitazone significantly increased the apoA-I secretion from the human hepatoma cell line HepG2.  相似文献   

20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrate that human breast cancer cells, but not normal mammary epithelial cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists of the thiazolidinedione (TZD) class. Although TZDs do not significantly alter the expression of components of the TRAIL signaling pathway, they profoundly reduce protein levels of cyclin D3, but not other D-type cyclins, by decreasing cyclin D3 mRNA levels and by inducing its proteasomal degradation. Importantly, both TRAIL sensitization and reduction in cyclin D3 protein levels induced by TZDs are likely PPARgamma-independent because a dominant negative mutant of PPARgamma did not antagonize these effects of TZDs, nor were they affected by the expression levels of PPARgamma. TZDs also inhibit G(1) to S cell cycle progression. Furthermore, silencing cyclin D3 by RNA interference inhibits S phase entry and sensitizes breast cancer cells to TRAIL, indicating a key role for cyclin D3 repression in these events. G(1) cell cycle arrest sensitizes breast cancer cells to TRAIL at least in part by reducing levels of the anti-apoptotic protein survivin: ectopic expression of survivin partially suppresses apoptosis induced by TRAIL and TZDs. We also demonstrate for the first time that TZDs promote TRAIL-induced apoptosis of breast cancer in vivo, suggesting that this combination may be an effective therapy for cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号