首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SHAW and Barto1 have demonstrated the presence of an autosomally inherited glucose-6-P dehydrogenase (G6PD) in the deer mouse. Subsequently, Ohno et al.2 found a similar enzyme in trout and showed that this enzyme and the autosomally inherited mouse enzyme differed from the sex-linked G6PD in possessing marked catalytic activity with galactose-6-P. This autosomally inherited G6PD was therefore named hexose-6-P dehydrogenase (H6PD)2,3. It was shown to oxidize glucose-6-P, galactose-6-P, mannose-6-P and 2-deoxy glucose-6-P with a Km of the order of 10?5 M. It also oxidizes glucose with a Km of 0.7 M3. It appears to be identical to the so-called “glucose dehydrogenase”. The enzyme utilizes both NAD and NADP and is microsome-bound. G6PD is localized in the soluble fraction of the cells of various tissues. Although it has been shown that two dehydrogenases from liver have different substrate specificity, molecular weight and elec-trophoretic mobility3,4, it has been suggested that the two enzymes are merely isozymes and they might be interconvertible5–7. We have now partially purified the two enzymes from human liver and show that they have different immunological properties.  相似文献   

2.
Summary Glucose-6-phosphate dehydrogenase activity in cell free extracts o Zymomonas mobilis showed marked differences when compared with the corresponding enzyme of Escherichia coli. It exhibited 3 times higher activity and the reaction rate over 10 min gave linearity only up to a cell free protein concentration of 0.15 mg protein. This different behaviour was not a function of environmental growth conditions of the culture nor of the nine different assay methods employed. A constant relationship existed between the specific G-6-P dehydrogenase protein and the total protein concentration in the cell free extract. The enzyme was stable for at least 5 h at 4°C in Tris-NaCl-MgCl2-buffer.An investigation of the properties of G-6-P dehydrogenase from Z. mobilis revealed a pH optimum of 8.7 with a rapid decline towards the acidic and a small decrease towards the alkaline side. The K m values were 5×10-4 m for glucose-6-phosphate and 3.6×10-5 m NADP+. The addition of 1×10-2 m MgCl2 produced optimal activity but higher concentrations inhibited the enzyme reaction.These results were discussed with those from other sources and found to be unique for Zymomonas mobilis.Meinem hochverehrten Lehrer Herrn Professor A. Rippel zum 80. Geburtstage.  相似文献   

3.
Cell-free extracts of d-fructose grown cells of marine species of Alcaligenes as well as Pseudomonas marina contained an activity which catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose in the 1-position as well as activities of the following enzymes: 1-P-fructokinase, fructose-1,6-P2 aldolase, PPi-dependent 6-P-fructokinase, fructokinase, glucokinase, P-hexose isomerase, glucose-6-P dehydrogenase, 6-P-gluconate dehydrase, and 2-keto-3-deoxy-6-P-gluconate aldolase. The presence of these enzyme activities would allow d-fructose to be degraded by the Embden-Meyerhof pathway and/or the Entner-Doudoroff pathway. In cell-free extracts of d-glucose grown cells, the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose as well as 1-P-fructokinase activity were reduced or absent while the remaining enzymes were present at levels similar to those found in d-fructose grown cells. Radiolabeling experiments suggested that both d-fructose and d-glucose were utilized primarily via the Entner-Doudoroff pathway. Alteromonas communis, a marine species lacking 1-P-fructokinase and the PPi-dependent 6-P-fructokinase, contained all the enzyme activities necessary for the catabolism of d-fructose and d-glucose by the Entner-Doudoroff pathway; the involvement of this pathway was also consistent with the results of the radiolabeling experiments.Non-Standard Abbreviations EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTS PEP: d-fructose phosphotransferase system - PPi-6-PFK PPi dependent 6-PFK - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

4.
Metabolism of glucose by unicellular blue-green algae   总被引:32,自引:0,他引:32  
Summary A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.Abbreviations A (U)DPG ADP-glucose or UDP-glucose - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - G(int.) intracellular glucose - F-6-P fructose-6-phosphate - 6-PG 6-phosphogluconate - Ru-5-P ribulose-5-phosphate - RUDP ribulose-1,5-diphosphate - PGA 3-phosphoglycerate - GAP glyceraldehyde-3-phosphate  相似文献   

5.
Equilibrium dialysis indicates that rat liver glucose-6-P dehydrogenase binds two molecules of NADP+ per subunit with a dissociation constant of 0.6 × 10?6 M. The NADP+ free enzyme will not bind glucose-6-P indicating a compulsory order of substrate binding. Development of an isotopic assay allowed a direct measurement of the effect of physiological alterations in the NADP+/NADPH ratio on the activity of glucose-6-P and 6-phosphogluconate dehydrogenases. A combination of enzyme induction and altered NADP+/NADPH ratios could produce 30–50 fold changes in the capacity of these enzymes to produce NADPH during alterations in the nutritional state of the animal.  相似文献   

6.
For the production of α-D-glucose-1-phosphate (G-1-P), α-1,4-D-glucan phosphorylase from Thermus caldophilus GK24 was partially purified to a specific activity of 13 U mg−1 and an enzyme recovery of 15%. The amount of G-1-P reached maximum (18%) when soluble starch was used as substrate, and the smallest substrate for G-1-P formation was maltotriose. The structure of purified G-1-P was confirmed by comparison to 13C-NMR data for an authentic sample. In addition to G-1-P, glucose-6-phosphate (12%) was simultaneously produced when 10 mM maltoheptaose was used as substrate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 89–93. Received 12 May 1999/ Accepted in revised form 29 August 1999  相似文献   

7.
Cell-free extracts of d-fructose grown cells of Pseudomonas putida, P. fluorescens, P. aeruginosa, P. stutzeri, P. mendocina, P. acidovorans and P. maltophila catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose and contained 1-P-fructokinase activity suggesting that in these species fructuse-1-P and fructose-1,6-P2 were intermediates of d-fructose catabolism. Neither the 1-P-fructokinase nor the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose was present in significant amounts in succinate-grown cells indicating that both activities were inducible. Cell-free extracts also contained activities of fructose-1,6-P2 aldolase, fructose-1,6-P2 phosphatase, and P-hexose isomerase which could convert fructose-1,6-P2 to intermediates of either the Embden-Meyerhof pathway or Entner-Doudoroff pathway. Radiolabeling experiments with 1-14C-d-fructose suggested that in P. putida, P. aeruginosa, P. stutzeri, and P. acidovorans most of the alanine was made via the Entner-Doudoroff pathway with a minor portion being made via the Embden-meyerhof pathway. An edd - mutant of P. putida which lacked a functional Entner-Doudoroff pathway but was able to grow on d-fructose appeared to make alanine solely via the Embden-Meyerhof pathway.Non-Standard Abbreviations cpm counts per min - edd - mutant lacking Entner-Doudoroff dehydrase (6-PGA dehydrase) - EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTs PEP: d-fructose phosphotransferase system - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

8.
Homogenates of Dunaliella primolecta, D. salina and D. tertiolecta were assayed for glycollate oxidase and glycollate dehydrogenase. Both D. primolecta and D. salina but not D. tertiolecta showed substantial glycollate-dependent O2-uptake which is characteristic of glycollate oxidase. L-Lactate was an alternative substrate and both glycollate- and L-lactate-dependent O2 uptake were insensitive to 2 mM cyanide. Glycollate dehydrogenase, measured by following the glycollate-dependent reduction of 2,6-dichlorophenolindophenol under aerobic conditions, was present in D. primolecta, D. salina and D. tertiolecta. In the presence of glycollate and D-lactate, rates were additive so both glycollate and D-lactate dehydrogenases are present in the homogenates. Glycollate and D-lactate oxidation were both inhibited by 2 mM cyanide. Organelles released from phototrophically grown cells of D. primolecta were separated by isopycnic centrifugation on sucrose gradients. Glycollate oxidase was present in the peroxisome fraction at an equilibrium density of 1.25 g/cm3, while the major peak of glycollate dehydrogenase activity was in the mitochondrial fraction at an equilibirium density of 1.22 g/cm3.  相似文献   

9.
In a spheroplasting method which allows the fractionation and quantification of cloned invertase activity in recombinantSaccharomyces cerevisiae cells, the yeast cell is selectively degraded with the enzyme Zymolyase for 60 minutes at 45°C to separate periplasmic proteins from cytoplasmic proteins. Most of the glucose-6-phosphate dehydrogenase (a cytoplasmic marker protein) was found in the cytoplasmic fraction.  相似文献   

10.
The aim of this work was to investigate the capacity for synthesis of starch and fatty acids from exogenous metabolites by plastids from developing embryos of oilseed rape (Brassica napus L.). A method was developed for the rapid isolation from developing embryos of intact plastids with low contamination by cytosolic enzymes. The plastids contain a complete glycolytic pathway, NADP-glucose-6-phosphate dehydrogenase, NADP-6-phosphogluconate dehydrogenase, fructose-1,6-bisphosphatase, NADP-malic enzyme, the pyruvate dehydrogenase complex (PDC), and acetyl-CoA carboxylase. Organelle fractionation studies showed that 67% of the total cellular PDC activity was in the plastids. The isolated plastids were fed with 14C-labelled carbon precursors and the incorporation of 14C into starch and fatty acids was determined. 14C from glucose-6-phosphate (G-6-P), fructose, glucose, fructose-6-phosphate and dihydroxyacetone phosphate (DHAP) was incorporated into starch in an intactness- and ATP-dependent manner. The rate of starch synthesis was highest from G-6-P, although fructose gave rates which were 70% of those from G-6-P. Glucose-1-phosphate was not utilized by intact plastids for starch synthesis. The plastids utilized pyruvate, G-6-P, DHAP, malate and acetate as substrates for fatty acid synthesis. Of these substrates, pyruvate and G-6-P supported the highest rates of synthesis. These studies show that several cytosolic metabolites may contribute to starch and/or fatty acid synthesis in the developing embryos of oilseed rape.  相似文献   

11.
We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.  相似文献   

12.
Light activation of NADP-linked glyceraldehyde-3-P dehydrogenase involves reductive cleavage of a disulfide bond. We have proposed that the inactivating disulfide locks the two domains of the enzyme, preventing catalysis, and we have tentatively identified the two critical cysteine residues in the chloroplast enzyme (D. Li, F.J. Stevens, M. Schiffer and L.E. Anderson (1994) Biophys J. 67: 29–35). We reasoned that if activation of this enzyme involves these cysteines that enzymes lacking one or both should be active in the dark and insensitive to reductants. One of these cysteines is present in the enzymes from Anabaena variabilis and Synechocystis PCC 6803 but the other is not. Consistent with the proposed mechanism, glyceraldehyde-3-P dehydrogenase is not affected by DTT-treatment in extracts of either of these cyanobacteria. Fructosebisphosphatase is DTT-activated in extracts of both of these cyanobacteria and glucose-6-P dehydrogenase is inactivated in Synechocystis, as in higher plant chloroplasts. Apparently reductive modulation is possible in these cyanobacteria but glyceraldehyde-3-P dehydrogenase is not light activated.  相似文献   

13.
Glucose-6-phosphate dehydrogenase (G-6-PD) is the first enzyme in the pentose phosphate pathway. Cadmium is a toxic heavy metal that inhibits several enzymes. Zinc is an essential metal but overdoses of zinc have toxic effects on enzyme activities. In this study G-6-PD from lamb kidney cortex was competitively inhibited by zinc both with respect to glucose-6-phosphate (G-6-P) and NADP+ with Ki values of 1.066 ± 0.106 and 0.111 ± 0.007 mM respectively whereas cadmium was a non-competitive inhibitor with respect to both G-6-P and NADP+ Ki values of 2.028 ± 0.175 and 2.044 ± 0.289 mM respectively.  相似文献   

14.
Summary In the presented study the influence of freezing and freeze-drying on enzyme activity is described. Attention is paid to 16 enzymes which can be used for quantitative enzyme histochemical techniques.With the exception of succinate dehydrogenase only, no significant inactivation during freezing and freeze-drying procedures could be demonstrated with lactate dehydrogenase, malate dehydrogenase (NAD+), malate dehydrogenase (decarboxylating) (NADP+), isocitrate dehydrogenase (NADP+), glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADH-oxydoreductase, mitochondrial glycerol-3-phosphate dehydrogenase, cytochrome c oxidase, phosphoglucomutase, glucosephosphate isomerase, glucose-6-phosphatase, acid phosphatase, -glucuronidase and non specific aryl esterase. Therefore the results supply a sound foundation for those quantitative enzyme histochemical techniques in which tissue specimens are frozen or frozen-dried before enzyme estimations are performed.  相似文献   

15.
Saccharomyces cerevisiae accumulates l-malic acid through a cytosolic pathway starting from pyruvic acid and involving the enzymes pyruvate carboxylase and malate dehydrogenase. In the present study, the role of malate dehydrogenase in the cytosolic pathway was studied. Overexpression of cytosolic malate dehydrogenase (MDH2) under either the strong inducible GAL10 or the constitutive PGK promoter causes a 6- to 16-fold increase in cytosolic MDH activity in growth and production media and up to 3.7-fold increase in l-malic acid accumulation in the production medium. The high apparent K m of MDH2 for l-malic acid (11.8 mM) indicates a low affinity of the enzyme for this acid, which is consistent with the cytosolic function of the enzyme and differs from the previously published K m of the mitochondrial enzyme (MDH1, 0.28 mM). Under conditions of MDH2 overexpression, pyruvate carboxylase appears to be a limiting factor, thus providing a system for further metabolic engineering of l-malic acid production. The overexpression of MDH2 activity also causes an elevation in the accumulation of fumaric acid and citric acid. Accumulation of fumaric acid is presumably caused by high intracellular l-malic acid concentrations and the activity of the cytosolic fumarase. The accumulation of citric acid may suggest the intriguing possibility that cytosolic l-malic acid is a direct precursor of citric acid in yeast. Received: 22 January 1997 / Received revision: 14 April 1997 / Accepted: 19 April 1997  相似文献   

16.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   

17.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

18.
1. Analytical differential centrifugation of rat heart homogenates revealed a single population of mitochondria and microperoxisomes. Using cytochorme c oxidase, malate dehydrogenase and amine oxidase as mitochondrial marker enzymes, the -value of mitochondria was estimated to = 10326 ± 406 S (average for the three marker enzymes). The −s-value of microperoxisomes was found to be −s = 1381 ± 40 S using catalase as the marker enzyme. The −s-value for the two orgenelles did not change significantly when the isoosmotic sucrose medium was substituted by an isoosmotic mannitol medium. 2. Analytical differential centrifugation revealed a polydispercity of the microsomal fraction using glucose-6-phosphatase and NADPH-cytochrome c reductase as the marker enzymes. The -values were found to be −sH1 = 1569 ± 412 S (NADPH-cytochrome c reductase), (glucose-6-phosphatase) and (NADPH-cytochrome c reductase and glucose-6-phosphatase). The recovery of marker enzymes in the isolated subcellular fractions was in the range of 84–94%. 3. When the mitochondrial and microperoxisomal fractions were subjected to isopycnic gradient centrifugation, using a self-generating gradient of polyvinylpyrrolidone-coated colloidal silica particles (Percoll) in 0.25 M sucrose medium, buoyant densities of 1.10 g/cm3 (main fraction of mitochondria) and 1.06 g/cm3 (main fraction of microperixosomes) were obtained. The density gradient centrifugation separated microperoxisomes from contaminating lysosomes of high specific activity in acid phosphatase. A value 1.04 g/cm3 was foung for the density of the microsomal fraction. 4. Based on the estimated -values, an optimal procedure is described for the isolattion of mitochondrial and microperoxisomal fractions from rat heart muscle.  相似文献   

19.
A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c3H/c6H mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in soluble malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19–21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.  相似文献   

20.
Biosynthesis of guanosine 5′-diphosphate-l-fucose (GDP-l-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP+-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-l-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-l-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-l-fucose production. However, GDP-l-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-l-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-l-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-l-fucose concentration of 235.2 ± 3.3 mg l−1, corresponding to a 21% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-l-fucose production in recombinant E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号