首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We know that there are fundamental differences between humans and living apes, and also between living humans and their extinct relatives. It is also probably the case that the most significant and divergent of these differences relate to our social behaviour and its underlying cognition, as much as to fundamental differences in physiology, biochemistry or anatomy. In this paper, we first attempt to demarcate what are the principal differences between human and other societies in terms of social structure, organization and relationships, so that we can identify what derived features require explanation. We then consider the evidence of the archaeological and fossil record, to determine the most probable context in time and taxonomy, of these evolutionary trends. Finally, we attempt to link five major transitional points in hominin evolution to the selective context in which they occurred, and to use the principles of behavioural ecology to understand their ecological basis. Critical changes in human social organization relate to the development of a larger scale of fission and fusion; the development of a greater degree of nested substructures within the human community; and the development of intercommunity networks. The underlying model that we develop is that the evolution of ‘human society’ is underpinned by ecological factors, but these are influenced as much by technological and behavioural innovations as external environmental change.  相似文献   

2.
Clinical studies in human volunteers are an essential part of drug development. These studies are designed to account for possible differences between the effects of pharmaceutical products in preclinical studies and in humans. However, the tragic outcome of the recent Phase 1 clinical trial on TGN1412 casts considerable doubt over the relevance of this traditional drug development paradigm to the testing of therapeutic agents for human use. The role of alternatives to animal testing is considered, and a series of recommendations are made, which could ensure that clinical trials are well informed and based on the most relevant scientific information.  相似文献   

3.
The entire coding region of the human activin receptor was obtained from a human testis cDNA library. Analysis of the 1539 nucleotide (513 amino acid) sequence of the receptor reveals that there are only 83 nucleotide differences compared to the coding sequence of the mouse activin receptor. Similar to its ligands, the amino acid sequence of the activin receptor is highly conserved with only two conservative amino acid differences (Lys-39 and Val-92 in human versus Arg-39 and Ile-92 in the mouse). This high degree of conservation of the activin receptor illustrates a strong evolutionary selection and confirms that activin and its receptor play an important role in development.  相似文献   

4.
The evolution of hominin growth and life history has long been a subject of intensive research, but it is only recently that paleoanthropologists have considered the ontogenetic basis of human morphological evolution. To date, most human EvoDevo studies have focused on developmental patterns in extant African apes and humans. However, the Old World monkey tribe Papionini, a diverse clade whose members resemble hominins in their ecology and population structure, has been proposed as an alternative model for human craniofacial evolution. This paper reviews prior studies of papionin development and socioecology and presents new analyses of juvenile shape variation and ontogeny to address fundamental questions concerning primate cranial development, including: (1) When are cranial shape differences between species established? (2) How do epigenetic influences modulate early-arising pattern differences? (3) How much do postnatal developmental trajectories vary? (4) What is the impact of developmental variation on adult cranial shape? and, (5) What role do environmental factors play in establishing adult cranial form? Results of this inquiry suggest that species differences in cranial morphology arise during prenatal or earliest postnatal development. This is true even for late-arising features that develop under the influence of epigenetic factors such as mechanical loading. Papionins largely retain a shared, ancestral pattern of ontogenetic shape change, but large size and sexual dimorphism are associated with divergent developmental trajectories, suggesting differences in cranial integration. Developmental simulation studies indicate that postnatal ontogenetic variation has a limited influence on adult cranial morphology, leaving early morphogenesis as the primary determinant of cranial shape. The ability of social factors to influence craniofacial development in Mandrillus suggests a possible role for phentotypic plasticity in the diversification of primate cranial form. The implications of these findings for taxonomic attribution of juvenile fossils, the developmental basis of early hominin characters, and hominin cranial diversity are discussed.  相似文献   

5.
Guo XJ 《遗传》2011,33(9):975-981
肌肉增强因子2(Myocyte enhancer factor 2,MEF2)是MADS(MCM1,agamous,deficiens和serum response factor)家族成员之一,在动物发育过程中起到重要的调节作用。为了进一步了解其调控的复杂性,本文根据NCBI中已有的人类MEF2相关数据,应用ExPASy在线序列分析工具、CBS在线分析服务器软件、Conserved Domain Database(CDD)数据库、SABLE在线分析软件等对人类MEF2蛋白的不同亚型序列进行比较分析,同时,根据相关序列的比对结果构建系统进化树进行分析。结果表明,MEF2在人体内以多种蛋白形式存在,其理化性质存在一定差别,可能的翻译后糖基化修饰多为O型糖基化且均存在较多磷酸化位点。人类各MEF2蛋白具明显MADS结构域,多数具有MEF2结构域和HJURP_C结构域。各MEF2蛋白二级结构均包括了螺旋、折叠和无规则卷曲等多种形式,其三级结构模式相似。系统进化树显示MEF2B蛋白与其他蛋白有着较大的序列差异及较远进化关系,可能较为原始。  相似文献   

6.
Infertility is a worldwide concern that can be treated with in vitro fertilization (IVF). Improvements in IVF and infertility treatment depend largely on better understanding of the molecular mechanisms for human preimplantation development. Several large-scale studies have been conducted to identify gene expression patterns for the first five days of human development, and many functional studies utilize mouse as a model system. We have identified genes of possible importance for this time period by analyzing human microarray data and available data from online databases. We selected 70 candidate genes for human preimplantation development and investigated their expression in the early mouse development from oocyte to the 8-cell stage. Maternally loaded genes expectedly decreased in expression during development both in human and mouse. We discovered that 25 significantly upregulated genes after fertilization in human included 13 genes whose orthologs in mouse behaved differently and mimicked the expression profile of maternally expressed genes. Our findings highlight many significant differences in gene expression patterns during mouse and human preimplantation development. We also describe four cancer-testis antigen families that are also highly expressed in human embryos: PRAME, SSX, GAGE and MAGEA.  相似文献   

7.
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.  相似文献   

8.
The remarkable similarity among the genomes of humans and the African great apes could warrant their classification together as a single genus. However, whereas there are many similarities in the biology, life history, and behavior of humans and great apes, there are also many striking differences that need to be explained. The complete sequencing of the human genome creates an opportunity to ask which genes are involved in those differences. A logical approach would be to use the chimpanzee genome for comparison and the other great ape genomes for confirmation. Until such a great ape genome project can become reality, the next best approach must be educated guesses of where the genetic differences may lie and a careful analysis of differences that we do know about. Our group recently discovered a human-specific inactivating mutation in the CMP-sialic acid hydroxylase gene, which results in the loss of expression of a common mammalian cell-surface sugar throughout all cells in the human body. We are currently investigating the implications of this difference for a variety of issues relevant to humans, ranging from pathogen susceptibility to brain development. Evaluating the uniqueness of this finding has also led us to explore the existing literature on the broader issue of genetic differences between humans and great apes. The aim of this brief review is to consider a listing of currently known genetic differences between humans and great apes and to suggest avenues for future research. The differences reported between human and great ape genomes include cytogenetic differences, differences in the type and number of repetitive genomic DNA and transposable elements, abundance and distribution of endogenous retroviruses, the presence and extent of allelic polymorphisms, specific gene inactivation events, gene sequence differences, gene duplications, single nucleotide polymorphisms, gene expression differences, and messenger RNA splicing variations. Evaluation of the reported findings in all these categories indicates that the CMP-sialic hydroxylase mutation is the only one that has so far been shown to result in a global biochemical and structural difference between humans and great apes. Several of the other known genetic dissimilarities deserve more exploration at the functional level. Among the areas of focus for the future should be genes affecting development, mental maturation, reproductive biology, and other aspects of life history. The approaches taken should include both going from the genome up to the adaptive potential of the organisms and going from novel adaptive regimes down to the relevant repercussions in the genome. Also, as much as we desire a simple genetic explanation for the human phenomenon, it is much more probable that our evolution occurred in multiple genetic steps, many of which must have left detectable footprints in our genomes. Ultimately, we need to know the exact number of genetic steps, the order in which they occurred, and the temporal, spatial, environmental, and cultural contexts that determined their impact on human evolution.  相似文献   

9.
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.  相似文献   

10.
Animals are frequently used as model systems for determination of safety and efficacy in pharmaceutical research and development. However, significant quantitative and qualitative differences exist between humans and the animal models used in research. This is as a result of genetic variation between human and the laboratory animal. Therefore the development of a system that would allow the assessment of all molecular differences between species after drug exposure would have a significant impact on drug evaluation for toxicity and efficacy. Here we describe a cross-species microarray methodology that identifies and selects orthologous probes after cross-species sequence comparison to develop an orthologous cross-species gene expression analysis tool. The assumptions made by the use of this orthologous gene expression strategy for cross-species extrapolation is that; conserved changes in gene expression equate to conserved pharmacodynamic endpoints. This assumption is supported by the fact that evolution and selection have maintained the structure and function of many biochemical pathways over time, resulting in the conservation of many important processes. We demonstrate this cross-species methodology by investigating species specific differences of the peroxisome proliferator-activator receptor (PPAR) α response in rat and human.  相似文献   

11.
Fisher''s principle states that natural selection favours an equal number of male and female births at the population level, unless there are sex differences in rearing costs or sex differences in mortality before the end of the period of parental investment. Sex differences in rearing costs should be more pronounced in low- than in high-resource settings. We, therefore, examined whether human development index and sex differences in child mortality contribute to the natural variation in human sex ratio at birth across the globe. As predicted by Fisher''s principle, the proportion of male births increased with both increasing male-biased childhood mortality and level of development of each country. However, these relationships were absent after accounting for spatial autocorrelation in the residuals, which our inference is conditioned on. This work shows how the failure to account for residual spatial autocorrelation can lead to incorrect conclusions regarding support for predictions from sex allocation theory.  相似文献   

12.
The large differences in RF safety standards are due to different philosophical approaches to public health standards development, different scientific approaches and interpretations of the scientific data, and different jurisdictions in various countries. In this paper, the origin of these differences is explored. The emphases are on the basic problems of why reported biological effects of RF fields are controversial, and how the general public can be misinformed. While there are differences in approaches and methods, science should converge and not diverge in finding the threshold level for exposure to EMF that is not adverse to human health. As the progress in technology continues and human beings are enjoying an increased quality of life, it is essential for scientists to ensure that safety is not compromised. More importantly, it is the responsibility and moral obligation of scientists and the media to bring "verified" information to the public. Scientists must conduct well-designed studies and to report the results in a clear and detailed manner, so other independent investigators can repeat the study or explore further. Mistakes must be minimized and stopped at the first level of scientific research.  相似文献   

13.
Human artificial chromosome (HAC) vectors are an important gene transfer system for expression and complementation studies. We describe a significant advance in HAC technology using infectious herpes simplex virus type 1 (HSV-1) amplicon vectors for delivery. This highly efficient method has allowed gene-expressing HACs to be established in glioma-, kidney- and lung-derived cells. We also developed an HSV-1 hypoxanthine phosphoribosyltransferase (HPRT) HAC vector, which generated functional HPRT-expressing HACs that complemented the genetic deficiency in human cells. The transduction efficiency of the HSV-1 HAC amplicons is several orders of magnitude higher than lipofection-mediated delivery. Studies on HAC stability between cell types showed important differences that have implications for HAC development and gene expression in human cells. This is the first report of establishing gene-expressing HACs in human cells by using an efficient, high-capacity viral vector and by identifying factors that are involved in cell-type-specific HAC instability. The work is a significant advance for HAC technology and the development of HAC gene expression systems in human cells.  相似文献   

14.

Background

Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression.

Results

In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development.

Conclusions

Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity.  相似文献   

15.
The clinical characteristics of Down's syndrome (DS), or trisomy 21, are caused by errors that occur during development. In addition to mental retardation, DS individuals have craniofacial abnormalities, clinical defects of the heart, gut and immune system, as well as predisposition to certain diseases, such as leukemias and Alzheimer's disease. To explain the developmental mechanisms that cause these traits, it is necessary to look at how developmental processes in DS compare to normal development. The neurological characteristics of DS are established during the prenatal and early postnatal period in humans, when the bulk of brain development occurs. Mouse models of DS have provided a useful way of studying DS neural development. However, there are clearly significant differences between rodent and human biology that may not be reflected in mouse models. Recent advances in stem cell biology now allow the generation of human neural tissue in the culture dish ( Ostenfeld & Svendsen 2003 ). Stem cells offer a novel model system to study alterations in neuron development in developmental disorders such as DS.  相似文献   

16.
The relative development of permanent teeth in samples of Neandertal/archaic Homo and Early Modern/Upper Paleolithic hominids is compared to the range of variability found in three recent human samples. Both fossil hominid samples are advanced in relative M2 and M3 development compared to white French-Canadians, but only the Neandertal/archaic Homo M3 sample is advanced when compared to black southern Africans. Both fossil hominid samples are delayed in relative I1 and P3 development compared to the recent human samples. Two hypotheses concerning the significance of the advanced M3 and M2 development found in both hominid groups and southern Africans compared to French-Canadians are discussed. The first postulates that the differences in relative molar development are due simply to variation in tooth/jaw size relationships. The second postulates that the relatively advanced M3 and M2 development found in the fossil hominids and southern Africans is a correlate of their potential for advanced skeletal maturation compared to French-Canadians and other European-derived populations. It appears that dental development patterns have continued to evolve from the Upper Pleistocene to present times, and that Neandertals and Early Moderns shared similar patterns of relative dental development. © 1996 Wiley-Liss, Inc.  相似文献   

17.
B cells develop in the mammalian bone marrow through a sequence of precursor stages, which can be ordered by the recombination status of their immunoglobulin loci. This developmental pathway is functionally similar between mice and man. However, whether this similarity is based on usage of the same genes is unknown. We show that large-scale gene expression patterns differ substantially between human and mouse B-cell development. Among 644 genes which were differentially expressed in 4 early stages of human B-cell development, only 48, 86, and 75 genes could be identified, which are upregulated in both human and mouse pre-BI, large pre-BII, and small pre-BII cells, respectively. A comparison of mouse B- and T-cell development reveals that gene expression patterns of early murine B- and T-cell precursors are most similar, whereas in more differentiated precursors, human and mouse B cells have a more similar gene expression profile. We conclude that large-scale differences in gene expression patterns between human and mouse B-cell precursors may stem from either selective neutrality or compensatory evolution, whereas the few similarities may stem from negative selection. Gene expression patterns are shaped by ontogenic relationships in early and by functional specialization in later stages of development.  相似文献   

18.
This study investigates the evolution of human growth by analyzing differences in body mass growth trajectories among three populations: the Ache of eastern Paraguay, the US (NHANES, 1999-2000), and captive chimpanzees. The relative growth statistic "A" from the mammalian growth law is allowed to vary with age and proves useful for comparing growth across different ages, populations, and species. We demonstrate ontogenetic separation between chimpanzees and humans, and show that interspecific differences are robust to variable environmental conditions. The human pattern of slow growth during the lengthened period from weaning to the beginning of the adolescent growth spurt is found among the Ache (low energy availability and high disease load) and also in the US (high energy availability and low disease load). The human growth pattern contrasts with that of the chimpanzee, where absolute growth rates and relative "A" values are faster and less prolonged. We suggest that selection has acted to decrease human growth rates to allow more time for increased cognitive development with lower body-maintenance costs.  相似文献   

19.
20.
Modeling opportunities in comparative oncology for drug development   总被引:1,自引:0,他引:1  
Successful development of novel cancer drugs depends on well-reasoned scientific drug discovery, rigorous preclinical development, and carefully conceived clinical trials. Failure in any of these steps contributes to poor rates of approval for new drugs to treat cancer. As technological and scientific advances have opened the door to a variety of novel approaches to cancer drug discovery and development, preclinical models that can answer questions about the activity and safety of novel therapies are increasingly necessary. The advance of a drug to clinical trials based on information from preclinical models presupposes that the models convey informative data for future use in human patients with cancer. The study of novel cancer drugs using in vitro models is highly controllable, reproducible, relatively inexpensive, and linked to high throughput. However, these models fail to reproduce many of the complex features of human cancer. Mouse models address some of these limitations but have important biological differences from human cancer. The integration of studies using pet dogs with spontaneously occurring tumors as models in the development path can answer questions not adequately addressed in conventional models and is therefore gaining attention and interest in drug development communities. The study of novel cancer drugs in dogs with naturally occurring tumors allows drug assessment in a cancer that shares many fundamental features with the human cancer condition, and thus provides an opportunity to answer questions that inform the cancer drug development path in ways not possible in more conventional models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号