首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Mechanism of SOS-induced targeted and untargeted mutagenesis in E. coli   总被引:1,自引:0,他引:1  
G Maenhaut-Michel 《Biochimie》1985,67(3-4):365-369
This paper retraces the evolution of hypotheses concerning mechanisms of SOS induced mutagenesis. Moreover, it reports some recent data which support a new model for the mechanism of targeted and untargeted mutagenesis in E. coli. In summary, the SOS mutator effect, which is responsible for untargeted mutagenesis and perhaps for the misincorporation step in targeted mutagenesis, is believed to involve a fidelity function associated with DNA polymerase III and does not require the umuC gene product. umuC and umuD gene products are probably required specifically for elongation of DNA synthesis past blocking lesions, i.e. to allow mutagenic replication of damaged DNA.  相似文献   

2.
To better understand the mechanisms of SOS mutagenesis in the bacterium Escherichia coli, we have undertaken a genetic analysis of the SOS mutator activity. The SOS mutator activity results from constitutive expression of the SOS system in strains carrying a constitutively activated RecA protein (RecA730). We show that the SOS mutator activity is not enhanced in strains containing deficiencies in the uvrABC nucleotide excision-repair system or the xth and nfo base excision-repair systems. Further, recA730-induced errors are shown to be corrected by the MutHLS-dependent mismatch-repair system as efficiently as the corresponding errors in the rec+ background. These results suggest that the SOS mutator activity does not reflect mutagenesis at so-called cryptic lesions but instead represents an amplification of normally occurring DNA polymerase errors. Analysis of the base-pair-substitution mutations induced by recA730 in a mismatch repair-deficient background shows that both transition and transversion errors are amplified, although the effect is much larger for transversions than for transitions. Analysis of the mutator effect in various dnaE strains, including dnaE antimutators, as well as in proofreading-deficient dnaQ (mutD) strains suggests that in recA730 strains, two types of replication errors occur in parallel: (i) normal replication errors that are subject to both exonucleolytic proofreading and dnaE antimutator effects and (ii) recA730-specific errors that are not susceptible to either proofreading or dnaE antimutator effects. The combined data are consistent with a model suggesting that in recA730 cells error-prone replication complexes are assembled at sites where DNA polymerization is temporarily stalled, most likely when a normal polymerase insertion error has created a poorly extendable terminal mismatch. The modified complex forces extension of the mismatch largely at the exclusion of proofreading and polymerase dissociation pathways. SOS mutagenesis targeted at replication-blocking DNA lesions likely proceeds in the same manner.  相似文献   

3.
Summary The dnaQ (mutD) gene product which encodes the -subunit of the DNA polymerase III holoenzyme has a central role in controlling the fidelity of DNA replication because both mutD5 and dnaQ49 mutations severely decrease the 3–5 exonucleolytic editing capacity.It is shown in this paper that more than 95% of all anaQ49-induced base pair substitutions are transversions of the types G:C-T:A and A:T-T:A. Not only is this unusual mutational specificity precisely that observed recently for a number of potent carcinogens such as benzo(a) pyrene diolepoxide (BPDE) and aflatoxin B1 (AFB1), which are dependent on the SOS system to mutagenize bacteria, but it is also seen for the constitutively expressed SOS mutator activity in E. coli tif-1 strains as well as for the SOS mutator activity mediated gap filling of apurinic sites. Because the G:C-T:A and A:T-T:A transversions can either result from the insertion of an adenine across from apurinic sites or arise due to the incorporation of syn-adenine opposite a purine base, we postulate that the DNA polymerase III holoenzyme also has a reduced discrimination ability in a dnaQ49 background.The introduction of a lexA (Ind-) allele, which prevents the expression of SOS functions, led to a significant reduction in the dnaQ49-caused mutator effect.Both, the mutational specificity observed and the partial lexA + dependence of the mutator effect provoke a reanalysis of the hypothesis that the DNA polymerase III holoenzyme can be converted into the postulated but until now unidentified SOS polymerase.  相似文献   

4.
We have used bacteriophage lambda to characterize the mutator effect of the SOS response induced by u.v. irradiation of Escherichia coli. Mutagenesis of unirradiated phages grown in irradiated or unirradiated bacteria was detected by measuring forward mutagenesis in the immunity genes or reversion mutagenesis of an amber codon in the R gene. Relative to the wild-type, the SOS mutator effect was higher in E. coli mismatch correction-deficient mutants (mutH, mutL and mutS) and lower in an adenine methylation-deficient mutant ( dam3 ). We conclude that a large proportion of SOS-induced 'untargeted' mutations are removed by the methyl-directed mismatch correction system, which acts on newly synthesized DNA strands. The lower SOS mutator effect observed in E. coli dam mutants may be due to a selective killing of mismatch-bearing chromosomes resulting from undirected mismatch repair. The SOS mutator effect on undamaged lambda DNA, induced by u.v. irradiation of the host, appears to result from decreased fidelity of DNA synthesis.  相似文献   

5.
Escherichia coli DNA polymerase III holoenzyme (HE) is the main replicase responsible for replication of the bacterial chromosome. E. coli contains four additional polymerases, and it is a relevant question whether these might also contribute to chromosomal replication and its fidelity. Here, we have investigated the role of DNA polymerase II (Pol II) (polB gene product). Mismatch repair-defective strains containing the polBex1 allele--encoding a polymerase-proficient but exonucleolytically defective Pol II--displayed a mutator activity for four different chromosomal lac mutational markers. The mutator effect was dependent on the chromosomal orientation of the lacZ gene. The results indicate that Pol II plays a role in chromosomal replication and that its role is not equal in leading- versus lagging-strand replication. In particular, the role of Pol II appeared larger in the lagging strand. When combined with dnaQ or dnaE mutator alleles, polBex1 showed strong, near multiplicative effects. The results fit a model in which Pol II acts as proofreader for HE-produced misinsertion errors. A second role of Pol II is to protect mismatched 3' termini against the mutagenic action of polymerase IV (dinB product). Overall, Pol II may be considered a main player in the polymerase trafficking at the replication fork.  相似文献   

6.
UV mutagenesis in E. coli is believed to occur in two discrete steps. The second step involves continued DNA synthesis beyond a blocking lesion in the template strand. This bypass step requires induced levels of umuD and umuC gene products and activated recA protein. DNA polymerase III may be involved since a dnaE mutator strain (believed to have defective base selection) is associated with enhanced UV mutagenesis in conjunction with a genetic background permitting the bypass step. In non-UV-mutable umu and lexA strains, UV mutagenesis can be demonstrated if delayed photorevesal is given. This is interpreted as indicating that an earlier misincorporation step can occur in such strains but the resulting mutations do not survive because the bypass step is blocked. The misincorporation step does not require any induced SOS gene products and can occur either at the replication fork or during repair replication following excision of a DNA lesion. Neither a dnaE mutator gene (leading to a defective subunit of DNA polymerase III holoenzyme) nor a mutD5 mutator gene (leading to a defective ε proofreading subunit) had any effect on he misincorporation step. Although this is consistent with DNA polymerase III holoenzyme not being involved in the misincorporation step, other interpretations involving the inhibition of ε proofreading activity by recA protein are possible.

In vitro studies are reported in which sites of termination of synthesis by DNA polymerase III holoenzyme on UV-irradiated M13 mp8 DNA were examined in the presence of inhibitors of the 3′–5′ proofreading exonuclease (including recA protein). No evidence was found for incorporation of bases opposite photoproducts suggesting that either inhibition is more complete in the cell and/or that other factors are involved in the misincorporation step.  相似文献   


7.
The dinA (damage inducible) gene was previously identified as one of the SOS genes with no known function; it was mapped near the leuB gene, where the polB gene encoding DNA polymerase II was also mapped. We cloned the chromosomal fragment carrying the dinA region from the ordered Escherichia coli genomic library and mapped the dinA promoter precisely on the physical map of the chromosome. The cells that harbored multicopy plasmids with the dinA region expressed very high levels of DNA polymerase activity, which was sensitive to N-ethylmaleimide, an inhibitor of DNA polymerase II. Expression of the polymerase activity encoded by the dinA locus was regulated by SOS system, and the dinA promoter was the promoter of the gene encoding the DNA polymerase. From these data we conclude that the polB gene is identical to the dinA gene and is regulated by the SOS system. The product of the polB (dinA) gene was identified as an 80-kDa protein by the maxicell method.  相似文献   

8.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

9.
M Simon  L Giot    G Faye 《The EMBO journal》1991,10(8):2165-2170
In Saccharomyces cerevisiae, DNA polymerase delta (POLIII), the product of the CDC2 (POL3) gene, possesses, in its N-terminal half, the well conserved 3-domain 3' to 5' exonuclease site. Strains selectively mutagenized in this site display a mutator phenotype detected as a drastically increased spontaneous forward mutation rate to canavanine resistance or as an elevated reversion rate to lysine prototrophy. Assays on a partially purified extract of the mutant giving the largest mutator effect indicate that the 3' to 5' exonuclease activity is reduced below the detection limit whereas the DNA polymerizing activity has wild-type level. Therefore, our results provide experimental support for the hypothesis that the exonucleolytic proofreading activity associated with DNA polymerase delta resides on the DNA polymerase delta subunit and enhances the fidelity of DNA replication in yeast.  相似文献   

10.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

11.
In Escherichia coli, the dinB gene is required for the SOS-induced lambda untargeted mutagenesis pathway and confers a mutator phenotype to the cell when the gene product is overexpressed. Here, we report that the purified DinB protein is a DNA polymerase. This novel E. coli DNA polymerase (pol IV) is shown to be strictly distributive, devoid of proofreading activity, and prone to elongate bulged (misaligned) primer/template structures. Site-directed mutagenesis experiments of dinB also demonstrate that the polymerase activity of DinB is required for its in vivo mutagenicity. Along with the sequence homologies previously found within the UmuC-like protein family, these results indicate that the uncovered DNA polymerase activity may be a common feature of all these homologous proteins.  相似文献   

12.
The polB gene encoding deoxyribonucleic acid (DNA) polymerase II has been located close to a mutator gene, mutT1, in Escherichia coli. We find the DNA polymerase II prepared from mutT1, strains to be normal in reaction requirements, heat stability, and ability to remove mismatched bases at termini. Recombinants formed from a mutant defective in DNA polymerase II (polB100) and mutT1 are deficient in polymerase II and have the same mutator phenotype as mutT1. Our linkage analysis indicates that mutT1 and polB100 are not isoallelic.  相似文献   

13.
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.  相似文献   

14.
A base substitution mutation (mutA) in the Escherichia coli glyV tRNA gene potentiates asp --> gly mistranslation and confers a strong mutator phenotype that is SOS independent, but requires recA, recB and recC genes. Here, we demonstrate that mutA cells express an error-prone DNA polymerase by using an in vitro experimental system based on the conversion of phage M13 single-stranded viral DNA bearing a model mutagenic lesion to the double-stranded replicative form. Amplification of the newly synthesized strand followed by multiplex DNA sequence analysis revealed that mutation fixation at 3, N4-ethenocytosine (varepsilonC) was approximately 3% when the DNA was replicated by normal cell extracts, approximately 48% when replicated by mutA cell extracts and approximately 3% when replicated by mutA recA double mutant cell extracts, in complete agreement with previous in vivo results. Mutagenesis at undamaged DNA sites was significantly elevated by mutA cell-free extracts in the M13 lacZ(alpha) forward mutagenesis system. Neither polA (DNA polymerase I) nor polB (DNA polymerase II) genes are required for the mutA phenotype, suggesting that the phenotype is mediated through a modification of DNA polymerase III or the activation of a previously unidentified DNA polymerase. These findings define the major features of a novel mutagenic pathway and imply the existence of previously unrecognized links between translation, recombination and replication.  相似文献   

15.
Summary It has been proposed that the mutation fixation processes stimulated by SOS induction result from an induced infidelity of DNA replication (Radman 1974). The aim of this study was to determine if mutator mutations in the E. coli DNA polymerase III might affect UV-induced mutagenesis.Using a phage mutation assay which can discriminate between targeted and untargeted mutations, we show that the polC74 mutator mutation (Sevastopoulos and Glaser 1977) primarily affects untargeted mutagenesis, which occurs in a recA1 genetic background and is amplified in the recA + genetic background. The polC74 mutation also increases the UV-induced mutagenesis of the bacterial chromosome. These results suggest that DNA polymerase III is involved in the process of UV-induced mutagenesis in E. coli.  相似文献   

16.
Previous studies on the selection of bacteriophage T4 mutator mutants have been extended and a method to regulate the mutator activity of DNA polymerase mutator strains has been developed. The nucleotide changes of 17 bacteriophage T4 DNA polymerase mutations that confer a mutator phenotype and the nucleotide substitutions of several other T4 DNA polymerase mutations have been determined. The most striking observation is that the distribution of DNA polymerase mutator mutations is not random; almost all mutator mutations are located in the N-terminal half of the DNA polymerase. It has been shown that the T4 DNA polymerase shares several regions of homology at the protein sequence level with DNA polymerases of herpes, adeno and pox viruses. From studies of bacteriophage T4 and herpes DNA polymerase mutants, and from analyses of similar protein sequences from several organisms, we conclude that DNA polymerase synthetic activities are located in the C-terminal half of the DNA polymerase and that exonucleolytic activity is located nearer the N terminus.  相似文献   

17.
M. E. Santos  J. W. Drake 《Genetics》1994,138(3):553-564
Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity.  相似文献   

18.
The Escherichia coli mutator mutD5 is a conditional mutator whose strength is moderate when the strain is growing in minimal medium but very strong when it is growing in rich medium. The primary defect of this strain resides in the dnaQ gene, which encodes the epsilon (exonucleolytic proofreading) subunit of the DNA polymerase III holoenzyme. In one of our mutD5 strains we discovered a mutation that suppressed the mutability of mutD5. Interestingly, the level of suppression was strong in minimal medium but weak in rich medium. The mutation was localized to the dnaE gene, which encodes the alpha (polymerase) subunit of the DNA polymerase III holoenzyme. This mutation, termed dnaE910, also conferred improved growth of the mutD5 strain and caused increased temperature sensitivity in both wild-type and dnaQ49 backgrounds. The reduction in mutator strength by dnaE910 was also observed when this allele was placed in a mutL, a mutT, or a dnaQ49 background. The results suggest that dnaE910 encodes an antimutator DNA polymerase whose effect might be mediated by improved insertion fidelity or by increased proofreading via its effect on the exonuclease activity.  相似文献   

19.
Thin map of gene 43, controlling the synthesis of T4 DNA polymerase, is obtained by mapping experiments performed with 39 amber mutants, and is used for analysis of the sites of DNA polymerase gene from the point of view of displaying the mutator effect. The mutant sites studied possessed different reaction on amino acid substitutions in the polypeptide chain of the enzyme. Most of sites of the DNA polymerase gene, with the exception of two "supersensitive", responsed only on the apparent type of the amino acid substitutions: the mutator effect of amber mutations, which are located at these sites, was exhibited only in the case of insertion of the definite amino acid in the respective point of polypeptide chain. The proposed system of amber mutations for studying the mutator effect, allowed the authors to obtain the data on the effect of concrete alterations in the polypeptide chain of the enzyme on the development of its mutator properties.  相似文献   

20.
Although polymerases delta and epsilon are required for DNA replication in eukaryotic cells, whether each polymerase functions on a separate template strand remains an open question. To begin examining the relative intracellular roles of the two polymerases, we used a plasmid-borne yeast tRNA gene and yeast strains that are mutators due to the elimination of proofreading by DNA polymerases delta or epsilon. Inversion of the tRNA gene to change the sequence of the leading and lagging strand templates altered the specificities of both mutator polymerases, but in opposite directions. That is, the specificity of the polymerase delta mutator with the tRNA gene in one orientation bore similarities to the specificity of the polymerase epsilon mutator with the tRNA gene in the other orientation, and vice versa. We also obtained results consistent with gene orientation having a minor influence on mismatch correction of replication errors occurring in a wild-type strain. However, the data suggest that neither this effect nor differential replication fidelity was responsible for the mutational specificity changes observed in the proofreading-deficient mutants upon gene inversion. Collectively, the data argue that polymerases delta and epsilon each encounter a different template sequence upon inversion of the tRNA gene, and so replicate opposite strands at the plasmid DNA replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号