首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-threshold Ca2+ current triggers neurotransmitter release, but the existence, significance, and correct identification of different types of high-threshold Ca2+ channels remain controversial. We show selective inhibition of a rapidly inactivating component of high-threshold Ca2+ current in rat sensory neurons by bursts of brief pulses that mimic trains of action potentials and by prolonged depolarization just above the normal rest potential. In contrast, a slowly inactivating component decreases only when sufficient Ca2+ accumulates within the cell. Thus, there are physiologically important differences: whereas availability of the transient component depends on the value of the rest potential and the pattern of a prior stimulus, the sustained component seems to provide a baseline level of voltage-dependent Ca2+ entry that is lost only when intracellular Ca2+ rises.  相似文献   

2.
In neurons enzymatically isolated from adult rat dorsal root ganglia and used during the following 24 hours, the Ca2+ currents were investigated with the whole-cell patch-clamp technique. In contrast to the neonatal neurons, the salient feature of these adult neurons is the well separated (in the voltage-range) activation and inactivation properties of each recorded current. The low-threshold T-, the high-threshold inactivating N-, and the long-lasting L-currents have a threshold for activation at -60, -45 and -10 mV, and a 50% inactivation at -75, -45 and -5 mV respectively. The N and L currents were poorly affected by 100 microM Ni, a known blocker of T channels and completely blocked by 100 microM Cd2+. Frequently we could find neurons with only one type of current present. We conclude that adult sensory neurons are a better preparation for studying, in isolation, the physiological relevance of the three types of Ca2+ channels.  相似文献   

3.
Granule cells acutely dissociated from the dentate gyrus of adult rat brains displayed a single class of high-threshold, voltage-activated (HVA) Ca2+ channels. The kinetics of whole-cell Ca2+ currents recorded with pipette solutions containing an intracellular ATP regenerating system but devoid of exogenous Ca2+ buffers, were fit best by Hodgkin-Huxley kinetics (m2h), and were indistinguishable from those recorded with the nystatin perforated patch method. In the absence of exogenous Ca2+ buffers, inactivation of HVA Ca2+ channels was a predominantly Ca(2+)-dependent process. The contribution of endogenous Ca2+ buffers to the kinetics of inactivation was investigated by comparing currents recorded from control cells to currents recorded from neurons that have lost a specific Ca(2+)-binding protein, Calbindin-D28K (CaBP), after kindling-induced epilepsy. Kindled neurons devoid of CaBP showed faster rates of both activation and inactivation. Adding an exogenous Ca2+ chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), to the intracellular solution largely eliminated inactivation in both control and kindled neurons. The results are consistent with the hypothesis that endogenous intraneuronal CaBP contributes significantly to submembrane Ca2+ sequestration at a concentration range and time domain that regulate Ca2+ channel inactivation.  相似文献   

4.
Omega Conus geographus toxin: a peptide that blocks calcium channels   总被引:3,自引:0,他引:3  
We previously reported that omega Conus geographus toxin (omega CgTX), blocks evoked-release of transmitter at synapses in frog and attenuates the Ca2+ component of the action potential of chick dorsal root ganglion neurons. We report here voltage-clamp experiments on cultured chick dorsal root ganglion neurons which demonstrate that omega CgTX produces a persistent block of voltage-gated Ca2+ currents. Thus, we conclude that omega CgTX inhibits synaptic transmission by blocking Ca2+ channels in the presynaptic nerve terminal. The toxin had no effect on K+ currents; however, in some but not all neurons, omega CgTX reduced Na+ currents by 10-25%. These findings suggest that omega CgTX should be useful as a probe to examine synaptic Ca2+ channels.  相似文献   

5.
Neurotrophic factors yield neuroprotection by mechanisms that may be related to their effects as inhibitors of apoptosis as well as their effects on ion channels. The effect of ciliary neurotrophic factor (CNTF) on high-threshold voltage-activated Ca channels in cultured fetal mouse brain cortical neurones was investigated. Addition of CNTF into serum-free growth medium resulted in delayed reduction of the Ca2+ currents. The currents decreased to 50% after 4 h and stabilized at this level during incubation with CNTF for 48 h. Following removal of CNTF the inhibition was completely reversed after 18 h. CNTF reduced the current of all pharmacological subtypes of Ca channels as shown by use of selective blockers of L, N, and P/Q type Ca channels (nifedipine, omega-conotoxin MVIIA, omega-agatoxin IVA). The Ca channel depression was mediated via the CNTF receptor, because enzymatic cleavage of the alpha-subunit glycerophosphatidylinositol anchor of the receptor eliminated the response. The CNTF effect was not elicited through pertussis toxin-sensitive G proteins. Other neurotrophic factors like neurotrophin-3 and insulin-like growth factor-I had no effect on the Ca2+ currents. These results may have important implications for the possible functions of CNTF in the nervous system, such as altered synaptic activity, neuronal excitability and susceptibility to brain ischaemia.  相似文献   

6.
Calcium currents through the somatic membrane of cultivated (a low-density culture) hippocampal neurons of rats were studied with the use of a patch-clamp technique in the whole-cell configuration. Low- and high-threshold components of calcium currents were found in the somata of all studied cells. Low-threshold currents were activated at a membrane potential of about−75 mV and reached the maximum amplitude at −45±4 mV, while the maximum amplitude of high-threshold currents was observed at 17±6 mV. Low-threshold calcium currents differed from high-threshold current in weak suppression by low Cd2+ concentration (10–20 μM), while Ni2+ inhibited both types of calcium currents to an equal extent. Experiments with organic channel blockers showed that in most neurons at least four channel types were expressed: these were L, N, P, and channels insensitive to the used blockers (presumably, R-type). A blocker of L-type calcium channels, nifedipine (10 μM), blocked, on the average, 22.7±5.2%; a blocker of N-type channels, ω-CTx-GVIA (1.0 μM), blocked 30.0±5.0% and a blocker of P/Q channels, ω-Aga-IVA (200 nM), blocked 37.2±13.3% of the integral high-threshold current. A resistive component equalled 15.7±5.1% of the latter current. It is concluded that hippocampal neurons cultivated with a low density express a pharmacologically heterogeneous population of calcium channels, and the relative proportions of different type channels are close to the earlier described channel type composition in rat hippocampal slices. Our study shows that the low-density culture can be used as an adequate model for studying calcium channels in the somatic membrane of hippocampal neurons.  相似文献   

7.
Primary afferent sensory neurons were amongst the first neuronal cell types to be studied for the expression of low-voltage-activated Ca2+ currents. Many early studies took advantage of the fact that these neurons are relatively easy to isolate and record from, and much of the initial biophysical data on T-type Ca2+ channels came from cultured sensory neurons . Shortly after this current had been described in sensory neurons, it was realized that the expression of T-type current is not constant across the DRG but appears to differ amongst subsets of sensory neuron . It was suggested that these channels might contribute to particular sensations transmitted by individual neurons and this has recently been put to the test using pharmacological and genetic experiments in animal models of pain and mechanosensation.  相似文献   

8.
Y P Gu  L Y Huang 《Neuron》1991,6(5):777-784
Compared with N-methyl-D-aspartate-activated channels, the interaction of Ca2+ with kainate-activated or with quisqualate-activated channels is not well understood. We have studied the effect of Ca2+ on kainate-activated currents in isolated trigeminal neurons and found that Ca2+ inhibits kainate responses. This inhibition occurs not because Ca2+ changes the affinity of kainate to its receptor, but because Ca2+ blocks monovalent cation permeation through kainate-activated channels. This Ca2+ block gives rise to the outward rectification of the kainate responses.  相似文献   

9.
It was found during experiments on rat sensory neurons that the relationship between high-threshold calcium channels and the system of intracellular cyclic nucleotide metabolism declined in the course of postnatal ontogenesis. Intracellullar administration of the cAMP-ATP-Mg2+ complex led to restoration after dialysis-induced decline in peak amplitude of high-threshold calcium currents in 70% of cells belonging to the first age group of 5–9-day-old animals, as against 26% of those examined in the 2nd (45-day-old) and only 10% of all those investigated in the third (90-day-old) group. Kinetics and voltage-dependence of high-threshold calcium current in the neuronal soma were identical in rats of all three age groups. The effect of recovery in calcium conductivity produced by intracellular application of the cAMP-ATP-Mg2+ complex was different in neurons with different inward current combinations. This recovery did not occur in cells with "fast" sodium and high-threshold calcium currents only. Conventional effects of intracellular cAMP application were seen in neurons mainfesting a "slow" TTX-resistant sodium inward current together with the two main inward currents.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vo.. 18, No. 6, pp. 827–832, November–December, 1986.  相似文献   

10.
M R Plummer  D E Logothetis  P Hess 《Neuron》1989,2(5):1453-1463
The major component of whole-cell Ca2+ current in differentiated, neuron-like rat pheochromocytoma (PC12) cells and sympathetic neurons is carried by dihydropyridine-insensitive, high-threshold-activated N-type Ca2+ channels. We show that these channels have unitary properties distinct from those of previously described Ca2+ channels and contribute both slowly inactivating and large sustained components of whole-cell current. The N-type Ca2+ currents are modulated by GTP binding proteins. The snail toxin omega-conotoxin reveals two pharmacological components of N-type currents, one blocked irreversibly and one inhibited reversibly. Contrary to previous reports, neuronal L-type channels are insensitive to omega-conotoxin. N-type Ca2+ channels appear to be specific for neuronal cells, since their functional expression is greatly enhanced by nerve growth factor.  相似文献   

11.
Lee DY  Chai YG  Lee EB  Kim KW  Nah SY  Oh TH  Rhim H 《Life sciences》2002,70(17):2047-2059
There is increasing evidence that estrogen influences electrical activity of neurons via stimulation of membrane receptors. Although the presence of intracellular estrogen receptors and their responsiveness in dorsal root ganglion (DRG) primary sensory neurons were reported, rapid electrical responses of estrogen in DRG neurons have not been reported yet. Therefore the current study was initiated to examine the rapid effects of estrogen on Ca2+ channels and to determine its detailed mechanism in female rat DRG neurons using whole-cell patch-clamp recordings. Application of 17beta-estradiol (1 microM) caused a rapid inhibition on high-voltage-activated (HVA)-, but not on low-voltage-activated (LVA)-Ca2+ currents. This rapid estrogen-mediated inhibition was reproducible and dose-dependent. This effect was also sex- and stereo-specific; it was greater in cells isolated from intact female rats and was more effective than that of 17alpha-estradiol, the stereoisomer of the endogenous 17alpha-estradiol. In addition, ovariectomy reduced the inhibition significantly but this effect was restored by administration of estrogen in ovariectomized subjects. Occlusion experiments using selective blockers revealed 17beta-estradiol mainly targeted on both L- and N-type Ca2+ currents. Overnight treatment of cells with pertussis toxin profoundly reduced 17beta-estradiol-mediated inhibition of the currents. On the other hand, estradiol conjugated to bovine serum albumin (EST-BSA) produced a similar extent of inhibition as 17beta-estradiol did. These results suggest that 17beta-estradiol can modulate L- and N-type HVA Ca2+ channels in rat DRG neurons via activation of pertussis toxin-sensitive G-protein(s) and non-genomic pathways. It is likely that such effects are important in estrogen-mediated modulation of sensory functions at peripheral level.  相似文献   

12.
L J Regan  D W Sah  B P Bean 《Neuron》1991,6(2):269-280
Block of Ca2+ channel current by dihydropyridines and by omega-conotoxin (omega-CgTx) was studied in a variety of freshly dissociated rat neurons. In most neurons, including those from dorsal root ganglia, sympathetic ganglia, spinal cord, cerebral cortex, and hippocampus, nitrendipine and omega-CgTx each blocked a fraction of the high-threshold current, but a substantial fraction of current remained even when the two blockers were applied together at saturating concentrations. An extreme case was cerebellar Purkinje neurons, in which very little current was blocked by either nitrendipine or omega-CgTx. These results demonstrate the existence in mammalian neurons of high-threshold channels that are resistant to both omega-CgTx and dihydropyridine blockers. Such channels might underlie instances of synaptic transmission and other processes that depend on Ca2+ entry but are not sensitive to these blockers.  相似文献   

13.
The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca(2+)-ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1-dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1-mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1-mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5-triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release.  相似文献   

14.
15.
Fedulova  S. A.  Isaeva  E. V.  Veselovsky  N. S. 《Neurophysiology》2000,32(6):355-359
We recorded evoked inhibitory post-synaptic currents (eIPSC) from a post-synaptic unit in a pair of synaptically connected cultured hippocampal neurons using a voltage-clamp technique in the whole-cell configuration and extracellular electrical stimulation of the pre-synaptic axon. Thirty-six neuronal pairs were examined. Dissimilar pharmacological sensitivities of eIPSC to a number of inorganic and organic blockers made it possible to estimate the involvement of different types of Ca2+ currents in Ca2+ entry into the presynaptic terminal and initiation of neurotransmitter release. Application of specific blockers of high-threshold Ca2+ channels allowed us to demonstrate that Ca2+ entry into presynaptic terminals of cultured hippocampal neurons is provided mostly by the system of high-threshold Ca2+ channels of the N- and P/Q-subtypes. The involvement of the L-subtype Ca2+ channels in the control of inhibitory transmission under study is insignificant.  相似文献   

16.
Functional expression of T-type Ca(2+) channels is developmentally regulated in chick nodose neurons. In this study we have tested the hypothesis that extrinsic factors regulate the expression of T-type Ca(2+) channels in vitro. Voltage-gated Ca(2+) currents were measured using whole-cell patch clamp recordings in E7 nodose neurons cultured under various conditions. Culture of E7 nodose neurons for 48 h with a heart extract induced the expression of T-type Ca(2+) channels without any significant effect on HVA currents. T-type Ca(2+) channel expression was not stimulated by survival promoting factors such as BDNF. The stimulatory effect of heart extract was mediated by a heat-labile, trypsin-sensitive factor. Various hematopoietic cytokines including CNTF and LIF mimic the stimulatory effect of heart extract on T-type Ca(2+) channel expression. The stimulatory effect of heart extract and CNTF requires at least 12 h continuous exposure to reach maximal expression and is not altered by culture of nodose neurons with the protein synthesis inhibitor anisomycin, suggesting that T-type Ca(2+) channel expression is regulated by a posttranslational mechanism. Disruption of the Golgi apparatus with brefeldin-A inhibits the stimulatory effect of heart extract and CNTF suggesting that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Heart extract- or CNTF-evoked stimulation of T-type Ca(2+) channel expression is blocked by the Jak/STAT and MAP kinase blockers, AG490 and U0126, respectively. This study provides new insights into the electrical differentiation of placode-derived sensory neurons and the role of extrinsic factors in regulating the functional expression of Ca(2+) channels.  相似文献   

17.
High-gain, low-noise amplification in olfactory transduction.   总被引:4,自引:0,他引:4       下载免费PDF全文
It is desirable that sensory systems use high-gain, low-noise amplification to convert weak stimuli into detectable signals. Here it is shown that a pair of receptor currents underlying vertebrate olfactory transduction constitutes such a scheme. The primary receptor current is an influx of Na+ and Ca2+ through cAMP-gated channels in the olfactory cilia. External divalent cations improve the signal-to-noise properties of this current, reducing the mean current and the current variance. As Ca2+ enters the cilium, it gates Cl- channels, activating a secondary depolarizing receptor current. This current amplifies the primary current, but introduces little additional noise. The system of two currents plus divalent cations in the mucus produces a large receptor current with very low noise.  相似文献   

18.
The action of several ligands on the low- (LVA,T) and high-threshold (HVA,L and N) Ca channels of adult rat sensory neurons and human neuroblastoma IMR32 cells has been investigated. In both cell types, 40 microM Cd2+ and 6.4 microM /omega-Conotoxin (omega-CgTx) selectively blocked the HVA channels, sparing the majority of LVA channels that were antagonized by amiloride and Ni2+. In 50% of the cells, however, /omega-CgTx spared also a 15% of HVA channels that proved to be sensitive to BAY K 8644. The agonistic action of BAY K 8644 on [omega-CgTx-resistant HVA channels caused a large Ba current increase, prolonged current deactivation and acceleration of HVA channels inactivation that was particularly evident in adult rat DRG.  相似文献   

19.
Despite the expression of voltage-dependent Ca2+ channels in nasal turbinate epithelium, their role in odorant chemosensation has remained obscure. Therefore, we investigated olfactory neurotransduction in beta3-deficient mice. RT-PCR and Western blots confirmed the expression of various types of Ca2+ channels in the nasal turbinate. Electrophysiological evaluations revealed that beta3-null mice had a 60% reduction in the high-voltage-dependent Ca2+ currents in olfactory receptor neurons due to reduced N- and L-type channel currents. The beta3-null mice showed increased olfactory neuronal activity to triethylamine, and this effect was mimicked by the perfusion of the specific N-type Ca2+ channel inhibitor omega-conotoxin GVIA in the electro-olfactogram. Diluted male urine odors induced higher Fos immunoreactivity in the main olfactory bulbs of beta3-deficient mice, indicating enhanced signal transduction of odor information in these mice. Our data indicate the involvement of voltage-dependent Ca2+ channels and importance of the beta3 subunit in olfactory signal transduction.  相似文献   

20.
Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on -aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (I) NMDA suppressed GABA- and muscimol (Mus)-activated currents (IGABA and Imus), respectively in the Mg2+-free external solution containing 1 mol/L glycine at a holding potential (VH) of 40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 mol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of IGABA; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 mol/L), the inhibitory effect of NMDA on IGABA disappeared. Cd2+ (10 mol/L) or La3+ (30 mol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of IGABA by NMDA application; (iii) the suppression of IGABA by NMDA was inhibited by KN-62, a calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号